КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Динамика вращательного движения
Момент инерции материальной точки , где m - масса точки, r - расстояние от оси вращения. Момент инерции твердого тела где - расстояние элемента массы от оси вращения. При непрерывном распределении массы Теорема Штейнера: момент инерции тела относительно произвольной оси равен , где - момент инерции тела относительно оси, проходящей через центр тяжести параллельно заданной оси, a - кратчайшее расстояние между осями, m - масса тела. , где l - длина стержня, ось перпендикулярна стержню. , где R - радиус диска, ось перпендикулярна плоскости основания. , где R - радиус шара. , где R - радиус кольца, ось перпендикулярна плоскости кольца. Момент импульса вращающегося тела где - угловая скорость. Основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси где M - момент результирующей силы, действующей на тело. где F - сила, h - плечо силы - кратчайшее расстояние от оси до линии действия силы. При J=const где - угловое ускорение. Закон сохранения момента импульса: , где - момент импульса i -го тела, входящего в состав замкнутой системы.
примеры решения задач
Задача 1. По наклонной плоскости, образующей угол a с горизонтом, скатывается без скольжения 1) сплошной однородный диск, 2) шар. Определить линейное ускорение их центров. Предварительно вывести общую формулу. Тело участвует в сложном движении: 1) поступательно движется вниз по наклонной плоскости; 2) вращается вокруг оси, проходящей через центр тяжести. На рисунке покажем силы, действующие на тело. Для поступательного движения запишем II закон Ньютона в проекциях на ось OX. . (1) Для вращательного движения используем закон , (2) где - момент инерции, - угловое ускорение. Момент силы создает сила трения, плечо которой равно R, две другие силы не создают вращающего момента. . Перепишем (2): . Выразим силу трения из (3) и подставим в (1): Отсюда . (4) Зная моменты инерции диска и шара , найдем ускорения диска и шара , Ответ: ,
Задача 2. Вертикальный столб высотой подпиливается у основания и падает на землю, поворачиваясь вокруг основания. Определить линейную скорость его верхнего конца в момент удара о землю. Трением пренебречь. На рисунке C- центр тяжести столба. Применим закон сохранения механической энергии. Масса распределена равномерно, поэтому в выражении для потенциальной энергии при вертикальном положении столба возьмем высоту его центра тяжести относительно нулевого уровня отсчета: . В горизонтальном положении столб приобретает кинетическую энергию где J - момент инерции относительно оси, проходящей через неподвижный конец, w - угловая скорость. . (1) По теореме Штейнера . Угловую скорость выразим через линейную скорость упавшего конца: . Подставив и в (1), найдем . Ответ: .
Задача 3. Стержень массой и длиной может свободно вращаться вокруг неподвижной оси, проходящей через его верхний конец. Стержень отклоняют в горизонтальное положение и отпускают. Проходя через вертикальное положение, нижний конец стержня упруго ударяет о малую шайбу массой . Определить скорость шайбы после удара.
Нулевой уровень отсчета потенциальной энергии проведем через центр тяжести стержня С при вертикальном положении стержня. Запишем закон сохранения механической энергии для стержня до удара. (1) где , - угловая скорость стержня. Для описания упругого соударения стержня с шайбой используем закон сохранения момента импульса (2) и закон сохранения механической энергии . (3) В уравнении (2) mVl - момент импульса шайбы. Напомним, что для материальной точки У шайбы r = l, Перепишем (2) и (3): ; (4) . (5) Разделив (5) на (4), найдем связь между и : . (6) Подставив (6) и в (4), получим . (7) Используем (2), тогда (7) примет вид Ответ:
задачи для самостоятельного решения
4.1. Через блок в виде однородного сплошного диска, имеющего массу m = 500 г, перекинута тонкая гибкая нить, к концам которой подвешены грузы массами m1 = 100 г и m2 = 120 г. С каким ускорением будут двигаться грузы, если ихпредоставить самим себе? Трением на оси блока пренебречь. 4.2. Вал массой m = 100 кг и радиусом R = 5 см вращается с частотой ν = 8 с-1. К цилиндрической поверхности вала прижали тормозную колодку с силой F = 40 Н, под действием которой вал остановился через время τ = 10 с. Определить момент и коэффициент силы трения. 4.3. За какое время t скатится без скольжения обруч с наклонной плоскости длиной l = 2 м и высотой h = 10 см? 4.4. Шар массой m = 10 кг и радиусом R = 20 см вращается вокруг оси, проходящей через его центр. Зависимость угла поворота от времени имеет вид φ = А + Bt2 + Сt3, где В = 4 рад/с2, С = - 1 рад/с3. Найти закон изменения момента сил, действующего на шар. Определить момент сил спустя время τ = 2 с после начала движения шара. 4.5. Тонкий однородный стержень длиной l = 50 см и массой m = 40 г вращается с угловым ускорением ε = 3 рад/с2 вокруг горизонтальной оси, проходящей перпендикулярно стержню: 1) через его середину, 2) через один из его концов. Определить вращающий момент для этих случаев. 4.6. Два тела массами m1 = 0,25 кг и m2 = 0,15 кг связаны тонкой нитью, перекинутой через блок. Блок укреплен на краю горизонтального стола, по поверхности которого скользит тело массой m1. С каким ускорением движутся тела? Коэффициент трения тела массой m1 о поверхность стола μ = 0,3. Масса блока m0 = 0,1 кг, и ее можно считать равномерно распределенной по объему блока. Массой нити и трением в подшипниках оси блока пренебречь. 4.7. Через неподвижный блок массой m = 0,2 кг перекинут шнур, к концам которого подвесили грузы массами m1 = 0,3 кг и m2 = 0,5 кг. Определить силы натяжения шнура Т1 и Т2 по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу. 4.8. Маховик в виде однородного диска массой m = 100 кг и радиусом R = 40 см вращался с частотой n = 480 об/мин. Определить момент тормозящей силы, если после начала действия этой силы маховик остановился через время τ = 80 с. 4.9. На шкив радиусом R = 10 см намотана нить, к концу которой привязан груз массой m = 2 кг. Груз опускается со скоростью, меняющейся по закону V = 2 – 8 t (м/с). Найти момент инерции шкива относительно оси вращения. Трением пренебречь. 4.10. Однородный сплошной цилиндр массой m0 = 5 кг и радиусом R = 20 см может без трения вращаться вокруг неподвижной горизонтальной оси. На цилиндр намотан тонкий нерастяжимый шнур, к которому прикреплён груз массой m1 = 3 кг. Найти угловое ускорение цилиндра и расстояние, пройденное грузом массой m1 за первые две секунды движения. 4.11. Через блок в виде однородного сплошного диска массой m0 = 3 кг, радиусом R = 10 см перекинута невесомая нить, к концам которой привязаны грузы массами m1 = 2 кг и m2 = 1 кг. Определить угловое ускорение блока. Трением на оси блока и проскальзыванием нити по блоку пренебречь. 4.12. Маховик, момент инерции которого J = 69,6 кг×м2, вращается с угловой скоростью ω = 31,4 рад/с. Найти тормозящий момент М, под действием которого маховик останавливается через время τ = 20 с. 4.13. Через блок перекинута невесомая нить, к концам которой привязаны два груза. Груз массой m2 = 5 кг поднимается со скоростью, меняющейся по закону V = 5 + 0,8 t (м/с), груз массой m1 опускается. Момент инерции блока J= 5×10-2 кг×м2, его радиус R = 0,2 м. Найти массу опускающегося груза m1. Трением пренебречь. 4.14. На цилиндр радиусом R = 40 см намотана нить, к концу которой подвешен груз массой m. Груз начал опускаться и за t = 4 с прошел путь h = 2 м. Какова масса груза? Момент инерции цилиндра Jц = 1,53 кг×м2. 4.15. На барабан радиусом R = 0,5 м намотан шнур, к которому привязан груз массой m = 10 кг. Найти момент инерции барабана, если известно, что груз опускается с ускорением а = 2,04 м/с2. 4.16. Вал массой m = 150 кг и радиусом R = 6 см вращался, делая 9 оборотов в секунду. К цилиндрической поверхности вала прижали тормозную колодку ссилой F = 50 Н, и через t = 10 с вал остановился. Определить коэффициент трения m. 4.17. Колесо (обруч и 2 стержня) пустили со скоростью V0 = 2 м/с. За какое время колесо остановится под действием тормозящей силы F = 5 Н? Масса обруча m1 = 3 кг, масса одного стержня m2 = 3 кг. 4.18. На барабан радиусом R = 20 см с моментом инерции J = 0,1 кг×м2 намотан шнур, к которому привязан груз массой m = 0,5 кг. До начала вращения барабана груз находился на высоте h = 1 м над полом. За какое время t груз опустится до пола? 4.19. Угол поворота стержня вокруг оси, проходящей через его центр, задан уравнением φ = At + Bt3, где B = 0,2 рад/с3, А = 2 рад/с. Определить вращающий момент М, действующий на стержень спустя время τ = 2 с после начала движения. Момент инерции стержня J = 0,048 кг×м2. 4.20. Блок, имеющий форму диска массой m = 0,4 кг, вращается под действием сил натяжения нити, к концам которой подвешены грузы массами m1 = 0,3 кг и m2 = 0,7 кг. Определить силы натяжения нити Т1 и Т2 по обе стороны блока. 4.21. К ободу однородного сплошного диска радиусом R = 0,5 м приложена постоянная касательная сила F= 100 Н. При вращении диска на него действует момент сил трения М = 2 Н×м. Определить массу m диска, если известно, что его угловое ускорение постоянно и равно ε = 12 рад/с2. 4.22. При торможении частота вращающегося колеса уменьшилась от n1 = 300 об/мин до n2 = 180 об/мин за время t = 1 мин. Определить момент силы торможения. Момент инерции колеса J = 2 кг×м2. 4.23. В медном диске радиусом R = 5 см и толщиной h = 1 мм сделаны симметрично относительно его центра два круглых выреза радиусом г = 2 см каждый, причем их центры удалены от центра диска на расстояние а = 2,5 см. Определить момент инерции диска с вырезами относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Плотность меди ρ = 8,9 г/см3. 4.24. Определить момент инерции цилиндрической муфты относительно оси, совпадающей с ее осью симметрии, масса муфты m = 2 кг, внутренний радиус г = 3 см, внешний - R = 5 см. 4.25. Определить момент инерции полого шара массой m = 0,5 кг относительно оси, проходящей через центр. Внешний радиус шара R = 0,02 м, внутренний - г = 0,01 м. 4.26. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек массой m1 = 60 кг. На какой угол повернется платформа, если человек пойдет вдоль её края и, обойдя его, вернется в исходную точку? Масса платформы m2 = 240 кг. Момент инерции человека рассчитывать так же, как для материальной точки. 4.27. На горизонтальной скамье Жуковского (однородный диск, который может вращаться с малым трением относительно вертикальной оси, проходящей через его центр) стоит человек и держит в руках стержень длиной l= 2,4 м и массой m = 8 кг, расположенный вертикально по оси вращения скамьи. Скамья с человеком вращается с частотой ν = 1 с-1. С какой частотой будет вращаться скамья с человеком, если он повернет стержень в горизонтальное положение? Суммарный момент инерции человека и скамьи J = 6 кг×м2. 4.28. На краю горизонтальной платформы, имеющей форму диска радиусом R = 2 м, стоит человек массой m1 = 80 кг. Масса платформы m2 = 240 кг. Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью ω будет вращаться платформа, если человек будет идти вдоль ее края со скоростью V = 2 м/с относительно платформы. 4.29. Диск массой m1 = 10 кг с лежащим на его краю шариком массой m2 = 1 кг вращается с частотой n1 = 10 об/мин относительно оси, проходящей через его центр. Шарик перекатывается в центр диска. Найти частоту n2. 4.30. Однородный стержень длиной l = 2 м и массой m = 8 кг подвешен за один конец и может вращаться без трения вокруг горизонтальной оси. В середину стержня ударилась и застряла в нем пуля массой m1 = 10 г, летевшая со скоростью V = 800 м/с. На какой угол отклонился стержень? 4.31. Горизонтальная платформа массой m = 80 кг и радиусом R = 1 м вращается с частотой n = 20 об/мин. В центре платформы стоит человек и держит в вытянутых руках гири. Какой станет частота вращения платформы, если человек, опустив руки, уменьшит свой момент инерции от J1 = 2,94 кг×м2 до J2 = 0,98 кг×м2? Считать платформу круглым однородном диском. 4.32. Кинетическая энергия вращающегося маховика равна E = 1000 Дж. Под действием постоянного тормозящего момента маховик начал вращаться равнозамедленно и, сделав N = 80 оборотов, остановился. Определить момент силы торможения M. 4.33. Маховик, момент инерции которого равен J = 4,0 кг×м2, начал вращаться равноускоренно из состояния покоя под действием момента силы М = 20 Н×м. Вращение продолжалось в течение времени t = 10 с. Определить кинетическую энергию, приобретенную маховиком. 4.34. Тонкий прямой стержень длиной l = 1 м прикреплен к горизонтальной оси, проходящей через его конец. Стержень отклонили на угол a = 600 от вертикали и отпустили. Определить линейную скорость V нижнего конца стержня в момент прохождения через положение равновесия. 4.35. Однородный стержень длиной l = 85 см подвешен на горизонтальной оси, проходящей через верхний конец стержня. Какую наименьшую скорость V надо сообщить нижнему концу стержня, чтобы он сделал полный оборот вокруг оси? 4.36. Горизонтально летевшая пуля попала вертикальный однородный стержнь массой m = 210 кг и длиной l = 1 м и застряла в нем. Стержень может свободно вращаться вокруг точки закрепления верхнего конца в шарнире. Пуля имела импульс Р = 3 кг×м/с и попала в стержень на расстоянии l = 20 см от точки закрепления стержня. Найти угловую скорость w, которую приобретет стержень с пулей. 4.37. На какой угол a надо отклонить однородный стержень, подвешенный на горизонтальной оси, проходящей через верхний конец стержня, чтобы нижний конец стержня при прохождении им положения равновесия имел скорость V = 5 м/с? Длина стержня l = 1 м. 4.38. Платформа в виде диска вращается по инерции около вертикальной оси с частотой n1 = 14 об/мин. На краю платформы стоит человек. Когда человек перешел в центр платформы, частота вращения возросла до n1 = 25 об/мин. Масса человека m = 70 кг. Определить массу платформы M. Момент инерции человека рассчитывать так же, как и для материальной точки. 4.39. Маховик в виде сплошного однородного диска массой m = 80 кг и радиусом R = 30 см находится в состоянии покоя. Какую работу требуется совершить, чтобы привести диск во вращение с частотой n = 10 об/с? Какую работу пришлось бы совершить при этом, если бы диск при той же массе имел вдвое больший радиус? 4.40. Карандаш длиной l= 15 см, поставленный вертикально, падает на стол. Какие угловую w и линейную V скорости будет иметь в конце падения: 1) середина карандаша; 2) верхний его конец? Нижний конец карандаша не проскальзывает. 4.41. Определить линейную скорость V центра шара, скатившегося без скольжения с наклонной плоскости высотой h = 1 м. 4.42. Однородный диск вкатывается в горку с начальной скоростью V0 = 12 км/ч. Определить угол наклона горки α, если до полной остановки диск пройдет по горке расстояние l = 2 м. 4.43. Вентилятор вращается с частотой n = 900 об/мин. После выключения он сделал до остановки N = 75 оборотов. Работа сил торможения равна A = 44,4 Дж. Найти: 1) момент инерции вентилятора J; 2) момент силы торможения M. 4.44. Какой путь пройдет катящийся без скольжения диск, поднимаясь вверх по наклонной плоскости с углом наклона a = 300, если ему сообщена начальная скорость V = 7 м/с, направленная вдоль наклонной плоскости? 4.45. Диск массой m1 = 5 кг и радиусом R = 5 cм, вращающийся с частотой n = 10 об/мин, приводится в сцепление с неподвижным диском массой m2 = 10 кг такого же радиуса. Определить энергию, которая пойдет на нагревание дисков, если при их сцеплении скольжение отсутствует. Диски имели общую ось вращения после сцепления. 4.46. Диск радиусом R = 10 см и массой m = 2 кг вращается с частотой ν = 2 об/с вокруг оси, проходящей через его центр. Какую работу надо совершить, чтобы увеличить частоту вращения диска вдвое? 4.47. Шарик массой m = 60 кг, привязанный к концу нити длиной 4.48. Шар и диск, двигаясь с одинаковой скоростью, вкатываются вверх по наклонной плоскости. Какое из тел поднимается выше? Найти отношение высот подъема. 4.49. Маховик вращается с частотой n = 10 об/с, его кинетическая энергия равна Т = 7,85 кДж. За какое время t вращающий момент М = 50 Н×м, приложенный к этому маховику, увеличит угловую скорость маховика в два раза? 4.50. Колесо начинает вращаться с постоянным угловым ускорением ε = 0,5 рад/си через время t1 = 15 с после начала движения приобретает момент импульса L = 73,5 кг×м2/с. Найти кинетическую энергию колеса через t2 = 20 с после начала вращения.
5. механические колебания Уравнения гармонических колебаний: x=Acos(wt+j0), x=Asin(wt+j0), или их линейная комбинация, где x - смещение точки от положения равновесия, A - амплитуда, wt+j0 - фаза колебаний в момент времени t, w - циклическая частота, j0 - начальная фаза. где u и T - частота и период. Дифференциальное уравнение свободных колебаний материальной точки: или где , m - масса точки, k - коэффициент квазиупругой силы. Полная энергия точки, совершающей гармонические колебания, Период колебаний тела, подвешенного на пружине (пружинный маятник), где m - масса тела, k - жесткость пружины. Период колебаний математического маятника где l - длина нити, g - ускорение свободного падения. Период колебаний физического маятника где J - момент инерции тела относительно оси колебаний, a - расстояние центра масс маятника от оси колебаний. Дифференциальное уравнение затухающих колебаний или , где c - коэффициент сопротивления, d - коэффициент затухания, - собственная циклическая частота колебаний. Уравнение затухающих колебаний (частное решение дифференциального уравнения): где A0 - амплитуда колебаний в момент времени t=0, A(t) - амплитуда затухающих колебаний в момент времени t. Декремент затухающих колебаний Логарифмический декремент колебаний где T - период. примеры решения задач
Задача 1. Математический маятник длиной l1=40 см и физический маятник в виде тонкого прямого стержня длиной l2=60 см синхронно колеблются около одной и той же горизонтальной оси. Определить расстояние a центра масс стержня от оси колебаний. При синхронном колебательном движении маятников их периоды равны , где . Отсюда (1) Момент инерции физического маятника определяется по теореме Штейнера: (2) Подставив (2) в (1), получим квадратное уравнение (3) Из (3) найдем два корня: a1=10 см, a2=30 см. Таким образом, при одном и том же периоде колебаний физического маятника возможны два варианта расположения оси. Величину (1) называют приведенной длиной физического маятника. Ответ: a1=10 см, a2=30 см. Задача 2. Найти уравнение, связывающее модуль импульса Px и координату x одномерного гармонического осциллятора. Масса осциллятора m1, циклическая частота w0, амплитуда колебаний A. Запишем уравнение гармонических колебаний (1) Тогда (2) Выразим из (1) а из (2) , (3) (4) Возведем (3) и (4) в квадрат и сложим. Учитывая, что получим - уравнение эллипса. Ответ: .
Задача 3. Математический маятник совершает малые колебания в среде, в которой коэффициент затухания . Определить время по истечении которого амплитуда маятника уменьшится в пять раз. Вследствие трения колебания маятника будут затухающими: где j - угол отклонения нити маятника от вертикали в момент времени t, при t=0, j=0. Амплитуда затухающих колебаний изменяется со временем по экспоненциальному закону . (1) Запишем (1) для моментов времени t и t+t: , . Отношение амплитуд . (2) Логарифмируя (2), найдем . Ответ: t=1,79 с. задачи для самостоятельного решения
5.1. Под действием грузика пружина растянулась на Dx = 9 см. Определить период собственных колебаний T этой системы. 5.2. Найти отношение длин двух математических маятников, если отношение их периодов Т1/ Т2 = 1,5. 5.3. Математический маятник установлен в лифте, который поднимается с ускорением a = 2,5 м/с2. Определить период T собственных колебаний маятника. Его длина равна 1 м. 5.4. Лифт, в котором колеблется математический маятник, опускается с ускорением a = 3 м/с2. Определить период колебаний T маятника. Его длина равна 1 м. 5.5. Грузик массой m подвешен к двум пружинам, соединённым "последовательно". Определить частоту колебаний груза. Коэффициенты жесткости пружин равны k1 и k2. 5.6. Грузик массой m подвешен к двум пружинам, соединенным "параллельно". Определить частоту колебаний груза. Коэффициенты жесткости пружин равны k1 и k2. 5.7. Медный шарик, подвешенный к пружине, свободно колеблется. Как изменится период колебаний этой системы, если вместо медного подвесить алюминиевый шарик таких же размеров? 5.8. На стержне длиной l = 30 см закреплены два одинаковых грузика: один - в середине стержня, другой - на одном из его концов. Эта система может свободно вращаться около горизонтальной оси, проходящей через свободный конец стержня. Определять период собственных колебаний T этого физического маятника. Массой стержня пренебречь. 5.9. На стержне длиной l = 30 см и массой m = 1 кг, закреплены два одинаковых грузика: один - в середине стержня, другой - на одном из его концов. Эта система может свободно вращаться около горизонтальной оси, проходящей через свободный конец стержня. Определять период собственных колебаний T этого физического маятника. 5.10. Диск радиусом R = 20 см может свободно вращаться вокруг горизонтальной оси, проходящей через середину радиуса перпендикулярно его плоскости. Определить частоту n собственных колебаний этого физического маятника. 5.11. Однородный стержень массой m и длиной lможет свободно вращаться вокруг горизонтальной оси, проходящей через его конец. Определить частоту собственных колебаний стержня. 5.12. Однородный стержень массой m, длиной l может свободно вращаться вокруг горизонтальной оси, проходящей на расстоянии l/4 от одного из его концов. Определить период колебаний этого физического маятника. 5.13. На горизонтальном столе лежит шар массой 200 г, прикрепленный к горизонтально расположенной пружине жесткостью 500 Н/м. В шар попадает пуля массой 10 г, летящая горизонтально со скоростью 300 м/с, и застревает в нем. Определить амплитуду и период колебаний шара. Перемещением шара во время удара, сопротивлением воздуха и трением между поверхностью шара и стола пренебречь. 5.14. Однородный стержень массой 0,5 кг и длиной l м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В противоположный конец стержня попадает пуля массой 10 г, летящая горизонтально со скоростью 300 м/с, и застревает в нем. Определить амплитуду и период колебаний стержня. 5.15. Однородный стержень может вращаться вокруг горизонтальной оси, проходящей на расстоянии 1/4 от одного из его концов. В противоположный конец попадает пуля массой 10 г, летящая горизонтально со скоростью 200 м/с, и застревает в нем. Определить амплитуду и период колебаний стержня. Масса стержня 0,5 кг, длина 1 м. 5.16. За 5 мин амплитуда математического маятника уменьшилась в 2раза. За какой промежуток времени его амплитуда уменьшится в 8 раз? 5.17. Математический маятник длиной 1 м колеблется в воздухе. За 10 мин его амплитуда уменьшилась в 2 раза. Определить логарифмический декремент затухания. 5.18. Грузик массой m, подвешенный к пружине жесткостью k, колеблется в среде. Логарифмический декремент затухания равен 9. За какой промежуток времени амплитуда уменьшится в 2 раза? Сколько полных колебаний совершит тело за это время? 5.19. Два последовательных максимальных отклонения математического маятника длиной lот вертикали равны φ1 и φ2, φ2 <φ1 << 1. Вычислить логарифмический декремент затухания и период колебаний маятника. 5.20. Кусок мяса положили на весы. Три последовательных крайних положения стрелки весов были такие: a1 = 560 г, a2 = 440 г, a3 = 520 г. Какова действительная масса куска мяса? Вычислить логарифмический декремент затухания колебаний стрелки весов. 5.21. Под действием вынуждающей силы Fx = F0cos(ωt) груз массой m, подвешенный на пружине жесткостью k, колеблется. Определить частоту вынуждающей силы, при которой наступит резонанс. 5.22. Чему равна резонансная амплитуда у системы без трения? Имеет ли максимум резонансная кривая при коэффициенте затухания, равном β ≥ ω0 / ? 5.23. Для трех коэффициентов затухания β1 < β2 < β3 нарисовать на одном чертеже качественные резонансные кривые. 5.24. Уравнение движения системы имеет вид . Вычислить период колебаний системы: 1) если нет вынуждающей силы и нет силы трения; 2) если система совершает установившиеся вынужденные колебания. 5.25. В молекуле азота частота колебаний атомов равна 4,45×1014 Гц, масса одного атома 2,32×10-26 кг. Найти коэффициент квазиупругой силы, действующей между атомами. 5.26. Определить период, частоту и начальную фазу свободных колебаний, заданных уравнением х = Asinω(t + τ), где ω = 2,5 πс-1, τ = 0,4 с, А - константа. 5.27. Колебания материальной точки заданы уравнением х = Acos(ωt + φ), где А = 2 см, ω = π с-1, φ = π/4 рад. Построить графики зависимости смещения точки от положения равновесия, ее скорости и ускорения. 5.28. Даны амплитуда и период свободных колебаний пружинного маятника: А = 4 см, Т = 2 с. Написать уравнение этих колебаний. В момент возникновения колебаний (0) = 0, (0) < 0. 5.29. Точка равномерно движется по окружности против часовой стрелки с периодом Т = 6 с. Диаметр окружности d = 20 см. Написать уравнение движения проекции точки на ось х. Принять, что в момент времени t = 0 х(0) = 0. Найти смещение, скорость и ускорение проекции точки в момент времени t = 1 с. 5.30. Пружинный маятник совершает гармонические колебания. Какие из приведенных выражений для полной энергии колеблющегося тела верны? Здесь k - жесткость пружины; A - амплитуда; m - масса тела; ω - циклическая частота; x - смещение тела от положения равновесия; V - скорость; Fmax - максимально упругая сила 5.31. Гармонический осциллятор совершает колебания. Какие из перечисленных величин достигают максимального значения в крайнем положении: скорость, ускорение, упругая сила, кинетическая энергия, потенциальная энергия? 5.32. Колебания материальной точки заданы уравнением 5.33. Колебания математического маятника заданы уравнением φ = φ0sin(ωt + а). Маятник отклонили на угол φ1 = 0,1 π, а затем отпустили. Определить начальную фазу. 5.34. Колебания материальной точки заданы уравнением х = 7sin0,5πt. За какой промежуток времени она проходит путь от положения равновесия до максимального смещения? 5.35. Записать уравнение гармонических колебаний материальной точки, если период колебаний Т = 2 с, максимальное ускорение аmax = 49,3 см/с2, начальное смещение точки от положения равновесия х(0) = 25 мм. 5.36. Для гармонического осциллятора массой m с координатой х = Acos(ωt + π/4) нарисовать графики зависимостей: T(t), u(t), E(u), T(u), T(x) u(x). Т, u, E - кинетическая, потенциальная и полная механическая энергия осциллятора. 5.37. Колебания гармонического осциллятора заданы уравнением х = Asin(ωt + φ0). Выразить через амплитуду А и начальную фазу φ0 значения координаты и скорости в момент времени t = 0. 5.38. Изобразить в моменты времени t0 = 0 и t1 = π /2ω на векторной диаграмме колебания: а) х = Acos(ωt + π/4), б) х = 2Acos(ωt- -π/6). Константа А > 0. 5.39. Колебания материальной точки заданы уравнением х = Acosωt, где А = 8 см, ω = 2π/3 Гц. В момент времени, когда сила, действующая на тело, в первый раз достигла 5 мН, потенциальная энергия была равна 100 мкДж. Определить этот момент времени и соответствующую ему фазу. 5.40. Частота затухающих колебаний 103 Гц. Определить частоту собственных колебаний системы, если резонанс наблюдается при частоте 998 Гц. 5.41. Пружинный маятник массой m и с жесткостью k колеблется под действием вынуждающей силы F = F0sin(ωt). Зависит ли амплитуда колебаний и как она зависит от F0, ω, m и k? Если зависит, то каким образом? 5.42. Колебания материальной точки заданы уравнением x = Asin(ωt). В момент времени, когда смещение тела было x1 =2,4 см его скорость достигла V1 = 3 см/с. В момент времени, когда смещение было x2 = 2,8 см, его скорость стала равной V2 = 2 см/с. Найти амплитуду и период этих колебаний. 5.43. Смещение шарика массой m = 10 г от положения равновесия описывается уравнением х = Asin(πt/5 + π/4), где А = 5 см. Определить максимальную силу, действующую на тело, и его полную энергию. 5.44. Записать уравнение гармонических колебаний. Известно, что максимальная скорость материальной точки равна Vmax = 10 cм/с, а ее максимальное ускорение amax = 100 см/с2. Принять начальную фазу колебаний равной нулю. 5.45. Записать уравнение гармонических колебаний материальной точки. Известно, что ее максимальное смещение xmax = 10 см, а максимальная скорость Vmах = 20 см/c. Принять начальную фазу колебаний равной нулю. 5.46. Колебания гармонического осциллятора описываются уравнением x = Asin(ωt). В некоторый момент времени смещение осциллятора х1 было равным 5 см. Когда фаза колебаний увеличилась в 2раза, смещение стало х2 = 8см. Определить амплитуду колебаний. 5.47. Колебания гармонического осциллятора описываются уравнением x = Asin(ωt), где А = 10 см, ω = 5 Гц. Вычислить действующую на осциллятор силу: 1) когда ωt = π/3; 2) когда смещение осциллятора максимально. 5.48. Амплитуды вынужденных колебаний при частотах вынуждающей силы n1 = 200 Гц и n2 = 300 Гц равны. Определить частоту, соответствующую резонансу. 5.49. Три последовательных аиплитудных положения качающейся стрелки гальванометра соответствуют делениям шкалы: n1 = 20,0; n2 = 5,6 и n3 = 12,8. Считая декремент затухания постоянным, определить деление, соответствующее положению равновесия стрелки. 5.50. Каков общий путь, пройденный материальной точкой до полного затухания колебаний? Амплитуда первого колебания равна 1 мм, логарифмический декремент затухания равен 0,002. КОНТРОЛЬНАЯ РАБОТА №I Варианты заданий для студентов заочной формы обучения
Библиографический список
1. Волькенштейн В.С. Сборник задач по общему курсу физики. - М.: Наука, 1979. 2. Детлаф А.А., Яворский Б.М. Курс физики. - М: Высш. шк., 1989. 3. Джанколи Д. Физика. – М.:Мир, 1989. 4. Зисман Г.А., Тодес О.М. Курс общей физики. – Киев: «Днипро», 1994. 5. Иродов И.Е. Задачи по общей физике. - М.: Наука, 1988. 6. Савельев И.В. Курс общей физики. Т.1. Механика. - М.: Наука, 1989. 7. Сивухин Д.В. Общий курс физики. Т.1. Механика. - М.: Наука, 1989. 8. Стрелков С.П. Механика. - М.: Наука, 1975. 9. Трофимова Т.И. Курс физики. Учеб. пособие для вузов. - М.: Высш. шк., 1989. 10. Фиргант Е.Г. Руководство к решению задач по курсу общей физики. - М.: Высш. шк., 1978. 11. Чертов А.Г., Воробьев А.А. Задачник по физике. - М.: Высш. шк. 1981. 12. Яворский Б.М., Детлаф А.А. Справочник по физике. - М.: Наука, 1980.
Дата добавления: 2014-11-07; Просмотров: 5669; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |