КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Равновесные носители тока в полупроводнике
Металлы Концентрация носителей тока
В металлах практически все валентные электроны являются свободными носителями. Поэтому их концентрация очень велика (обычно 1022 ÷1023 см-3 или 1028 - 1029 м-3) и практически не зависит от температуры. Концентрацию носителей можно вычислить по формуле: где , - плотность и молярная масса металла, - число Авогадро, - количество валентных электронов на один атом, вошедших в «коллектив» электронов проводимости (для меди можно принять , для платины ).
Ширина запрещённой зоны , у типичных полупроводников лежит в пределах от нескольких десятых электрон-вольта до двух-трех электрон-вольт (табл.1). Напомним, что единица энергии 1 эВ = 1,6 10-19 Дж. Разрыв электронных связей и образование электронов проводимости в полупроводнике может происходить за счет тепловых колебаний атомов кристаллической решетки. Средняя энергия теплового движения частиц по порядку величины равняется, как известно, , где - постоянная Больцмана. При комнатной температуре 300 К энергия теплового движения , т.е. значительно меньше ширины запрещённой зоны . Несмотря на это, тепловое движение вызывает разрывы электронных связей, так как мгновенная кинетическая энергия атома может во много раз превышать её среднее значение.
Согласно статистическому распределению Больцмана, вероятность обнаружить атом в состояния с энергией, равной или большей , пропорциональна: . (9) Для описания электронной и дырочной компонент тока применимы соотношения (1 - 4), в формулах (1) и (2) знак «минус» соответствует электронам, а знак «плюс» - дыркам. Полная плотность тока, очевидно, равна где индекс «n» относится к электронам, «p» - к дыркам. Таким образом, тепловое движение непрерывно создает (генерирует) электроны проводимости и дырки. В то же время идут и обратные процессы рекомбинации, в результате которых свободные электроны вновь захватываются атомами, что приводит к одновременному исчезновению электрона и дырки. В установившемся состоянии существует динамическое равновесие процессов генерации и рекомбинации. В результате при данной температуре устанавливается равновесная концентрация электронов и дырок. Число электронно-дырочных пар , создаваемых каждую секунду в единице объема полупроводника, т.е. скорость генерации, в соответствии с (9) равна , (10) где - коэффициент пропорциональности, различный для разных полупроводников. Вероятность одновременного появления в произвольной точке кристалла электрона и дырки, т.е. их встречи и рекомбинации, должна быть пропорциональной произведению концентраций электронов и дырок. Таким образом, число пар, рекомбинирующих каждую секунду в единице объема, т.е. скорость рекомбинации , равна . Коэффициент пропорциональности‚ , как и в формуле (10), различен для разных полупроводников. В собственных полупроводниках (без примесей) носители генерируются и рекомбинируют всегда парами. Поэтому . Отсюда следует, что . В состоянии динамического равновесия . Приравнивая (10) и (12), получим: и равновесная концентрация носителей оказывается равной (13) Константа перед экспонентой в (13), очевидно, имеет ту же размерность, что и или . Обозначая её через или , запишем окончательный вид зависимости равновесной концентрации электронов проводимости полупроводника от температуры: (14) Такую же формулу можно написать и для равновесной концентрации дырок: (15) В табл. 1 приведены экспериментальные данные по равновесной концентрации носителей в типичных полупроводниках при комнатной температуре.
Дата добавления: 2014-11-07; Просмотров: 2137; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |