КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Задачи 11 и 12Интегрирование элементарных дробей. Интегрирование по частям. Непосредственное интегрирование. Методы интегрирования. Рассмотрим три основных метода интегрирования. Метод непосредственного интегрирования основан только на применении свойств неопределенного интеграла и таблицы интегралов основных функций. Способ подстановки (замены переменных). Теорема: Если требуется найти интеграл, но сложно отыскать первообразную, то с помощью замены x = j(t) и dx = j¢(t)dt получается:
Пример. Найти неопределенный интеграл. Сделаем замену t = sinx, dt = cosxdt.
Пример. Замена Получаем:
Основано на следующей формуле: ; Пример.
Пример.
Перенесем последний интеграл в левую часть равенства.
Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным. Пример.
Пример.
Пример.
Пример.
Пример.
Пример.
Пример.
Пример.
Пример.
Пример.
Определение: Элементарными называются дроби следующих четырех типов: I. III. II. IV. m, n – натуральные числа (m ³ 2, n ³ 2) и b2 – 4ac <0. Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t = ax + b. I. II. Рассмотрим метод интегрирования элементарных дробей вида III. Интеграл дроби вида III может быть представлен в виде:
Здесь в общем виде показано приведение интеграла дроби вида III к двум табличным интегралам. Пример.
Пример.
Пример.
Для решения задач 11 и 12 необходимо изучить раздел 6 Рабочей программы – определенный интеграл. Приведем основные теоретические факты, необходимые здесь.
Интегральные суммы. Пусть на отрезке [a, b] задана непрерывная функция f(x). y M
m 0 a xi b x Разобьем отрезок [a, b] на части (не обязательно одинаковые) n точками. x0 < x1 < x2 < … < xn Тогда x1 – x0 = Dx1, x2 – x1 = Dx2, …,xn – xn-1 = Dxn; Внутри каждого отрезка выберем некоторую точку e. x0 < e1 < x1, x1 < e < x2, …, xn-1 < e < xn. Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке [a, b]. Sn = f(e1)Dx1 + f(e2)Dx2 + … + f(en)Dxn = Обозначим maxDxi – наибольший отрезок разбиения. Если maxDxi® 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности. Если, то Определение: Если при любых разбиениях отрезка [a, b] таких, что maxDxi® 0 и произвольном выборе точек ei интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b]. Обозначение: а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования. Определение: Если для функции f(x) существует предел то функция называется интегрируемой на отрезке [a, b]. Теорема: Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.
Свойства определенного интеграла. 1) 2) 3) 4) Если f(x) £ j(x) на отрезке [a, b] a < b, то 5) Если m и M – соответственно наименьшее и наибольшее значения функции f(x) на отрезке [a, b], то:
6) Теорема о среднем. Если функция f(x) непрерывна на отрезке [a, b], то на этом отрезке существует точка e такая, что
7) Для произвольных чисел a, b, c справедливо равенство:
Разумеется, это равенство выполняется, если существует каждый из входящих в него интегралов. 8) Обобщенная теорема о среднем. Если функции f(x) и j(x) непрерывны на отрезке [a, b], и функция j(х) знакопостоянна на нем, то на этом отрезке существует точка e, такая, что
Вычисление определенного интеграла. Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл. Теорема: (Теорема Ньютона – Лейбница) Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то
это выражение известно под названием формулы Ньютона – Лейбница. Иногда применяют обозначение F(b) – F(a) = F(x). Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.
Методы интегрирования определенных интегралов. Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов. Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.
Дата добавления: 2014-10-15; Просмотров: 373; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |