КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение типовых примеров. Пусть задан интеграл , где f(x) – непрерывная функция на отрезке [a, b]
Замена переменных. Пусть задан интеграл, где f(x) – непрерывная функция на отрезке [a, b]. Введем новую переменную в соответствии с формулой x = j(t). Тогда если 1) j(a) = а, j(b) = b 2) j(t) и j¢(t) непрерывны на отрезке [a, b] 3) f(j(t)) определена на отрезке [a, b], то
Тогда Пример.
Интегрирование по частям. Если функции u = j(x) и v = y(x) непрерывны на отрезке [a, b], а также непрерывны на этом отрезке их производные, то справедлива формула интегрирования по частям:
Несобственные интегралы. Пусть функция f(x) определена и непрерывна на интервале [a, ¥). Тогда она непрерывна на любом отрезке [a, b]. Определение: Если существует конечный предел, то этот предел называется несобственным интегралом от функции f(x) на интервале [a, ¥). Обозначение: Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится. Если предел не существует или бесконечен, то несобственный интеграл расходится. Аналогичные рассуждения можно привести для несобственных интегралов вида:
Конечно, эти утверждения справедливы, если входящие в них интегралы существуют. Теорема: Если для всех х (x ³ a) выполняется условие и интеграл сходится, то тоже сходится и ³. Теорема: Если для всех х (x ³ a) выполняется условие и интеграл расходится, то тоже расходится. Теорема: Если сходится, то сходится и интеграл. В этом случае интеграл называется абсолютно сходящимся. Интеграл от разрывной функции. Если в точке х = с функция либо неопределена, либо разрывна, то
Если интеграл существует, то интеграл - сходится, если интеграл не существует, то - расходится. Если в точке х = а функция терпит разрыв, то. Если функция f(x) имеет разрыв в точке b на промежутке [a, с], то
Таких точек внутри отрезка может быть несколько. Если сходятся все интегралы, входящие в сумму, то сходится и суммарный интеграл.
Вычисление площадей плоских фигур с помощью определенного интеграла.
у
+ +
0 a - b x
Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”. Для нахождения суммарной площади используется формула. Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.
Пример. Найти площадь фигуры, ограниченной линиями y = x, y = x2, x = 2. Искомая площадь (заштрихована на рисунке) может быть найдена по формуле: (ед2) Пример. Вычислить несобственный интеграл или доказать его расходимость. a. - не существует. Несобственный интеграл расходится. b. - интеграл сходится
Дата добавления: 2014-10-15; Просмотров: 367; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |