КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Контрольная работа № 3. Расчет на прочность и жесткость вала круглого и кольцевого сечений
Вопросы и задания для самоконтроля Пример решения задачи Дано: плоское сечение, представленное на Рисунке 3.2. Требуется найти: Ø центр тяжести сечения; Ø моменты инерции сечения относительно главных центральных осей; Ø радиус инерции сечения относительно главной центральной оси ZC. Решение: Ось симметрии фигуры Y (Рисунок 3.2) является главной осью инерции. Координата zC=0, т.к. центр тяжести лежит на оси симметрии Y=YC. Определим положение центра тяжести фигуры по оси симметрии Y. Разобьем сложную фигуру на составляющие простые: два равнобедренных треугольника I, III и прямоугольник II (Рисунок 3.2). Площади выделенных фигур: см2; см2; см2, всей фигуры - см2. Расчеты удобно свести в таблицу:
Тогда см. Откладываем эту координату и проводим через центр тяжести (точку С на Рисунке 3.3) главную центральную ось ZC. Найдем моменты инерции всей фигуры относительно главной центральной оси ZC, складывая (или вычитая) моменты инерции составляющих фигур:
Для этого определим моменты инерции каждой из фигур I, II, III относительно горизонтальной оси - собственной главной центральной оси ZCi // ZC, используя табличные формулы (см. Приложение С3)
Рисунок 3.3
для равнобедренного треугольника I см4; для прямоугольника II см4; для равнобедренного треугольника III см4; По формулам параллельного переноса осей, где yiС – расстояние от центра тяжести i- ой фигуры Сi до центра тяжести всего сечения С, определяем главный центральный момент инерции сечения
см4. Радиус инерции относительно главной центральной оси ZC определяется по формуле см. 11. Для чего необходимы геометрические характеристики плоских сечений? 12. Назовите основные геометрические характеристики поперечных сечений. 13. Что такое статический момент плоской фигуры? Какова его размерность? 14. Какими свойствами обладает статический момент? 15. Как определяется положение центра тяжести сечения? 16. Для каких сечений положение главных осей можно указать без вычислений? 17. Что такое момент сопротивления сечения? 18. Какие оси называются центральными осями? 19. Какие оси и какие моменты инерции называются главными? 20. Напишите зависимости между моментами инерции относительно параллельных осей. 21. Как изменяются моменты инерции при повороте координатных осей? 22. В какой последовательности определяется положение главных центральных осей для составных сечений?
Варианты тестовых заданий
Дата добавления: 2014-10-15; Просмотров: 370; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |