КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Циклы газотурбинных установок
В циклах ДВС рабочее тело выбрасывается из цилиндра с температурой и давлением , которые превышают соответствующие параметры окружающей среды р 0, То, практически совпадающие с Поэтому циклам ДВС присущи потери эксергии из-за «недорасширения» газов до параметров окружающей среды. Их удается значительно сократить в циклах газотурбинных установок. Рисунок 8.4 - Схема газотурбинной установки
Воздушный компрессор К сжимает атмосферный воздух, повышая его давление от р 1до р 2 и непрерывно подает его в камеру сгорания КС. Туда же специальным нагнетателем Н непрерывно подается необходимое количество жидкого или газообразного топлива. Образующиеся в камере продукты сгорания выходят из нее с температурой и практически с тем же давлением (если не учитывать сопротивления), что и на выходе из компрессора ()- следовательно, горение топлива (т. е. подвод теплоты) происходит при постоянном давлении. В газовой турбине Т продукты сгорания адиабатно расширяются, в результате чего их температура снижается до Т4, а давление уменьшается до атмосферного. Весь перепад давлений используется для получения технической работы в турбине . Большая часть этой работы l к расходуется на привод компрессора; разность является полезной и используется, например, на производство электроэнергии в электрическом генераторе ЭГ или на другие цели (при использовании жидкого топлива расход энергии на привод топливного насоса невелик, и в первом приближении его можно не учитывать). Рисунок 8.5 - Цикл газотурбинной установки: а — в p,v -координатах; б — в T,s -координатах Заменив сгорание топлива изобарным подводом теплоты (линия 2-3 на рисунке), а охлаждение выброшенных в атмосферу продуктов сгорания — изобарным отводом теплоты (линия 4-1), получим цикл газотурбинной установки 1-2-3-4. Полезная работа l ц изображается площадью, заключенной внутри контура цикла (площадь 1-2-3-4). На рис. 6.5, а видно, что полезная работа равна разности между технической работой, полученной в турбине (площадь 6-3-4-5), и технической работой, затраченной на привод компрессора (площадь 6-2-1-5). Площадь цикла 1-2-3-4 в Т,s -диаграмме эквивалента этой же полезной работе (рис. б). Теплота, превращенная в работу, получается как разность между количествами подведенной (площадь 8-2-3-7) и отведенной (площадь 1-4-7-8) теплоты. Коэффициент полезного действия идеального цикла ГТУ При этом теплоемкость ср принята для простоты постоянной. Одной из основных характеристик цикла газотурбинной установки является степень повышения давления в компрессоре , равная отношению давления воздуха после компрессора р2 к давлению перед ним. Тогда коэффициент полезного действия идеального цикла ГТУ Коэффициент полезного действия идеального цикла непрерывно возрастает с увеличением . Это связано с увеличением температуры в конце процесса сжатия и соответственно температуры газов перед турбиной .На рис. б отчетливо видно, что цикл 1-2'-3'-4, в котором больше, экономичнее цикла 1-2-3-4, ибо по линии 2'-3' подводится больше теплоты , чем по линии 2-3, при том же количестве отведенной в процессе 4-1 теплоты . При этом и больше, чем соответственно и . Дело в том, что с увеличением возрастает эксергия рабочего тела перед турбиной, т. е. уменьшаются потери эксергии при сгорании, поскольку эксергия исходного топлива постоянна (равна теплоте его сгорания). Это и увеличивает КПД цикла. Максимальная температура газов перед турбиной ограничивается жаропрочностью металла, из которого делают ее •элементы. Применение охлаждаемых лопаток из специальных материалов позволило повысить ее до 1400—1500°С в авиации (особенно на самолетах-перехватчиках, где ресурс двигателя мал) и до 1050—1090°С в стационарных турбинах, предназначенных для длительной работы. Непрерывно разрабатываются более надежные схемы охлаждения, обеспечивающие дальнейшее повышение температуры. Поскольку она все же ниже предельно достижимой при горении, приходится сознательно идти на снижение температуры горения топлива (за cчет подачи излишнего количества воздуха). Это увеличивает эксергетические потери от сгорания в ГТУ иногда до 40 %. Газы выбрасывают из турбины с температурой . Следовательно, эксергия рабочего тела, которой мы располагаем перед турбиной, используется также не полностью: потери эксергии с уходящими газами могут доходить до 10 %. Поэтому КПД ГТУ оказывается пока еще ниже, чем ДВС. Не имея деталей с возвратно-поступательным движением, газовые турбины могут развивать значительно большие мощности, чем ДВС. Предельные мощности ГТУ сегодня составляют 100—200 МВт. Они определяются высотой лопаток, прочность которых должна выдержать напряжения от центробежных усилий, возрастающих с увеличением их высоты и частоты вращения вала. Поэтому газовые турбины применяются прежде всего в качестве мощных двигателей в авиации и на морском флоте, а также в маневренных стационарных энергетических установках. Ряд технологических процессов, особенно химической промышленности, связан с потоками нагретых сжатых газов. Расширение этих газов в газовой турбине позволяет получить энергию, которая обычно используется в этом же процессе, например для нагнетания тех же газов. В этом случае вал турбины непосредственно соединяется с валом турбокомпрессора. Такое комбинирование позволяет существенно снизить потребление энергии в технологическом процессе. К сожалению, оно используется еще недостаточно широко, во-первых, из-за косности мышления технологов, а во-вторых, из-за отсутствия турбин на нужные параметры, Часто используют авиационные двигатели, выработавшие свой ресурс. В энергетике газовые турбины иногда используют для привода воздуходувок, нагнетающих воздух в топку котла, работающую под давлением. Для этого продукты сгорания, охлажденные в котле до необходимой температуры, направляются в турбину, сидящую на одном валу с воздуходувкой, и расширяются в ней до атмосферного давления, совершая работу.
Дата добавления: 2014-10-15; Просмотров: 355; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |