КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Число степей свободы. Универсальная структурная формула
Классификация механизмов и виды звеньев Классификация кинематических пар Совокупность поверхностей, линий и отдельных точек звена, по которым оно может соприкасаться с другим звеном, образуя кинематическую пару, называется элементом кинематической пары. Кинематические пары делятся на низшие и высшие. Таблица 1
Низшей называется кинематическая пара, в которой относительное движение двух звеньев может быть получено постоянным соприкосновением ее элементов по поверхности. Высшей называется кинематическая пара, в которой относительное движение двух звеньев может быть получено соприкосновением ее элементов только линиями или точками. Введем обозначения: Н – число степеней свободы в относительном движении двух звеньев, образующих кинематическую пару; S – число уравнений геометрических связей, налагаемых на относительное движение указанных звеньев. Всегда выполняется равенство: Н+S=6. Число S уравнений связей принимается за номер класса кинематической пары, а в зависимости от числа пары подразделяются на одно-, двух-, трех-, четырех- и пятиподвижные. Так, если Н = 1 и соответственно S = 5, то данная пара является одноподвижной и относится к пятому классу. В зависимости от характера относительного движения двух звеньев, кинематические пары могут быть различного вида.В табл.1 приведены девять видов кинематических пар вместе с соответствующими значениями Н и S, а также условными графическими обозначениями пар. Пары вида «цилиндр – плоскость» и «шар – плоскость» относятся к высшим, а семь предыдущих пар в табл.1 – к низшим. Для шести первых видов пар (см. табл.1) введем буквенные обозначения: П (поступательная), В (вращательная), Ви (винтовая), Ц (цилиндрическая), Сп (сферическая с пальцем) и С (сферическая).
Механизмы делятся на плоские и пространственные. Механизм называется плоским, когда все точки его подвижных звеньев движутся во взаимно параллельных плоскостях. В других случаях механизм называют пространственным. Среди всего многообразия механизмов выделяют следующие группы механизмов: рычажные, кулачковые, зубчатые, фрикционные, с гибкими связями(ременная передача, цепная передача) и др. Звенья рычажных механизмов образуют друг с другом пары вида П, В, Ви, Ц, Сп или С, причем в плоских рычажных механизмах встречаются только одноподвижные пары - П и В. За звеньями механизмов в зависимости от характера их движения закрепились определенные названия. Кривошип – звено, которое образует вращательную пару со стойкой и может совершать полный оборот вокруг оси этой пары. Коромысло – звено, которое образует вращательную пару со стойкой и может совершать только неполный оборот вокруг оси этой пары. С подвижным звеном кривошип и коромысло образуют, как правило, вращательную пару. Ползун – звено, образующее поступательную пару со стойкой и движущееся прямолинейно - поступательно. Шатун – звено, образующее кинематические пары только с подвижными звеньями. Кулиса – звено, вращающееся вокруг неподвижной оси и образующее с другим подвижным звеном поступательную пару. Кулачок – звено, которому принадлежит элемент высшей пары, выполненный в виде поверхности или кривой переменной кривизны. Зубчатое звено – звено, имеющее выступы (зубья) для передачи движения посредством взаимодействия с выступами другого звена (тоже зубчатого). Вращающееся зубчатое звено называется зубчатым колесом. В дальнейшем будем рассматривать плоские рычажные механизмы. Некоторые схемы плоских рычажных механизмов показаны на рис.1, рис.2 и рис.13. В шестизвенном механизме первого типа (см. рис.1) входное звено 1 является кривошипом, звенья 3 и 5 – коромыслами, а звенья 2 и 4 – шатунами. В четырехзвенном механизме второго типа (рис.2) звено 1 – кулиса, 2 – шатун, 3 – коромысло. В четырехзвенном механизме первого типа (рис.13) входное звено 1 – ползун, звено 2 – шатун, а звено 3 — коромысло.
Независимые между собой параметры (линейные или угловые), однозначно определяющие положение всех звеньев механизма относительно стойки, называются обобщенными координатами механизма. Число обобщенных координат называется числом степеней свободы или подвижностью механизма. В качестве обобщенных координат механизма обычно принимают относительные перемещения звеньев, образующих входные кинематические пары. Например, в механизмах, показанных на рис.1,2 в качестве обобщенной координаты принимают: угол φ (рис.1) или линейный параметр S (рис.2 и 13). Для плоских рычажных механизмов без избыточных связей подвижность W определяется при помощи универсальной структурной формулы. W = 3(n –1) – 2p, (1) где n – число звеньев механизма (включая стойку); р – число кинематических пар. Для механизма, показанного на рис.13, имеем: n= 4; W = 1; для механизма на рис.1 n = 6, р = 7, W = 1. Формула (1) не выполняется для механизмов с избыточными связями. Избыточными связями в механизме называются связи, которые повторяют (дублируют) ограничения, наложенные другими связями. Число qизбыточных связей и подвижность W механизма связаны соотношением: W = 3(n – 1) – 2p + q (2)
Избыточные связи могут существовать только при особых соотношениях между постоянными параметрами кинематической схемы механизма. Так, в механизме двойного параллелограмма (рис.14) выполняются соотношения: АВ=CD,BE=CF, AD=BC=EF. В этом механизме n = 5, р = 6, q = 1, W = 1.
Дата добавления: 2014-10-15; Просмотров: 602; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |