КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. 1.Для расчета параметров уравнения линейной регрессии строим расчетную таблицу D.2
1. Для расчета параметров уравнения линейной регрессии строим расчетную таблицу D.2. Таблица D.2
; . Получено уравнение регрессии: . С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,89 руб. 2. Тесноту линейной связи оценит коэффициент корреляции: ; . Это означает, что 51% вариации заработной платы () объясняется вариацией фактора – среднедушевого прожиточного минимума. Качество модели определяет средняя ошибка аппроксимации: . Качество построенной модели оценивается как хорошее, так как не превышает 8-10%. 3. Оценку значимости уравнения регрессии в целом проведем с помощью -критерия Фишера. Фактическое значение -критерия: . Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы и составляет . Так как , то уравнение регрессии признается статистически значимым. Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей. Табличное значение -критерия для числа степеней свободы и составит . Определим случайные ошибки , , : ; ; . Тогда ; ; . Фактические значения -статистики превосходят табличное значение: ; ; , поэтому параметры , и не случайно отличаются от нуля, а статистически значимы. Рассчитаем доверительные интервалы для параметров регрессии и . Для этого определим предельную ошибку для каждого показателя: ; . Доверительные интервалы Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры и , находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля. 4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит: руб., тогда прогнозное значение заработной платы составит: руб. 5. Ошибка прогноза составит: . Предельная ошибка прогноза, которая в случаев не будет превышена, составит: . Доверительный интервал прогноза: руб.; руб. Выполненный прогноз среднемесячной заработной платы является надежным () и находится в пределах от 131,66 руб. до 190,62 руб. 6. В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую (рис. D.1): Рис. D.1. Варианты индивидуальных заданий Задача 1. По территориям региона приводятся данные за 199X г. (см. таблицу своего варианта). Требуется: 1. Построить линейное уравнение парной регрессии от . 2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации. 3. Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента. 4. Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня. 5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал. 6. На одном графике построить исходные данные и теоретическую прямую. Вариант 1
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7
Вариант 8
Вариант 9
Вариант 10
Дата добавления: 2014-10-15; Просмотров: 1280; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |