КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу: №
Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу:
Найдем средние квадратические отклонения признаков:
1. Вычисление параметров линейного уравнения множественной регрессии. Для нахождения параметров линейного уравнения множественной регрессии
необходимо решить следующую систему линейных уравнений относительно неизвестных параметров
либо воспользоваться готовыми формулами:
Рассчитаем сначала парные коэффициенты корреляции:
Находим
Таким образом, получили следующее уравнение множественной регрессии:
Коэффициенты
Т.е. уравнение будет выглядеть следующим образом:
Так как стандартизованные коэффициенты регрессии можно сравнивать между собой, то можно сказать, что ввод в действие новых основных фондов оказывает большее влияние на выработку продукции, чем удельный вес рабочих высокой квалификации. Сравнивать влияние факторов на результат можно также при помощи средних коэффициентов эластичности:
Вычисляем:
Т.е. увеличение только основных фондов (от своего среднего значения) или только удельного веса рабочих высокой квалификации на 1% увеличивает в среднем выработку продукции на 0,61% или 0,20% соответственно. Таким образом, подтверждается большее влияние на результат 2. Коэффициенты парной корреляции мы уже нашли:
Они указывают на весьма сильную связь каждого фактора с результатом, а также высокую межфакторную зависимость (факторы Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии. При двух факторах частные коэффициенты корреляции рассчитываются следующим образом:
Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи. Именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи. Коэффициент множественной корреляции определить через матрицу парных коэффициентов корреляции:
где
– определитель матрицы парных коэффициентов корреляции;
– определитель матрицы межфакторной корреляции.
Коэффициент множественной корреляции
Аналогичный результат получим при использовании других формул:
Коэффициент множественной корреляции показывает на весьма сильную связь всего набора факторов с результатом. 3. Нескорректированный коэффициент множественной детерминации Скорректированный коэффициент множественной детерминации
определяет тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов и поэтому может сравниваться по разным моделям с разным числом факторов. Оба коэффициента указывают на весьма высокую (более 4. Оценку надежности уравнения регрессии в целом и показателя тесноты связи
В нашем случае фактическое значение
Получили, что 5. С помощью частных
Найдем
Имеем
Получили, что Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения 6. Общий вывод состоит в том, что множественная модель с факторами
Варианты индивидуальных заданий По 20 предприятиям региона изучается зависимость выработки продукции на одного работника Требуется: 1. Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат. 2. Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их. 3. Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации. 4. С помощью 5. С помощью частных 6. Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор. Вариант 1
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7
Вариант 8
Вариант 9
Вариант 10
Дата добавления: 2014-10-15; Просмотров: 416; Нарушение авторских прав?; Мы поможем в написании вашей работы! |