КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Космология. Элементы физики Мегамира
План лекции 1. Космология. Элементы физики Мегамира. 2. Геологическая эволюция. Структурные уровни материи в рамках геосфер Земли. 3. Основные гипотезы («теории») происхождения жизни. Что такое жизнь? Выделив в структурных уровнях материи гипермир (см. лекцию 4; 4.2), как представление о множестве мегамиров, мы фактически задали мегамир, как взаимодействующую и развивающую систему с усложнением фрактальной структуры «стрел времени» от Большого взрыва до образования космических тел, доступную современным методам исследования всех форм материи, в нее входящих, а также их взаимодействий (см. схему 45).
Схема 47. Структура Мегамира.
1. Обычная материя – 4-5% всей материи в Мегамире (во Вселенной) 2. Темная материя – 23% всей материи в Мегамире (во Вселенной) 3. Темная энергия (энергия вакуума или космологическая постоянная) – 73% всей материи в Мегамире (во Вселенной). 4. Нейтрино.
В схеме приводятся звёздные массы для эллиптических E-галактик. Для спиральных S-галактик звёздные массы составляют 90-97%;а для неправильных Ir-галактик составляют 80% от массы галактики (Физическая энциклопедия 1988, с. 389). В последнее время стали считать;что обычное вещество находится в основном в облаках газа и звёздная масса составляет всего 10% от массы газа. Кроме того; нейтрино приписывают от 0,3 до 3% вклада в полную энергию (массу) во Вселенной (презентация лекции В А Рубакова Тёмная материя и тёмная энергия во Вселенной 2. 02. 2010).
В рамках выделения Мегамира, как возможно одной из частей Гипермира, мы под Вселенной будем понимать объект космологии Мегамира, т.е. ту часть материального мира, которая на данном уровне познания доступна астрономическому (наблюдательному и теоретическому) исследованию. Итак, космология – это наука, целью которой является изучение и представление о Вселенной как едином целом. Космогония – наука, изучающая происхождение небесных тел и систем от Солнечной системы до звезд, галактик и скоплений галактик. Для наглядного модельного представления о масштабах нашей Галактики и Метагалактики представим их схематически (см. схему 48) с указанием удаления некоторых космических объектов от Солнца. Масштаб соответствующей модели: м (боровский радиус):м (радиус Земной орбиты) = . При этом Вселенная в рамках Метагалактики включает в себя ÷ Галактик, в каждой из которой находится 1011 звезд.
Схема 48. Модель Галактики и Метагалактики
Наша, наиболее важная для нас, Галактика носит название Млечный путь и состоит из более чем 100 млрд. звезд. Диаметр нашей Галактики настолько велик, что человеку, даже если бы он мог перемещаться со скоростью света (м/с), понадобилось бы 100000 лет для того, чтобы пересечь ее. Если перевести реальные размеры Галактики в привычные для макромира километры, то ее диаметр составляет приблизительно один квинтиллион (1018) километров. Среднее расстояние между звездами внутри нашей Галактики составляет около 60 триллионов (60×1012) километров. В связи с огромными масштабами вводят новые астрономические единицы: астрономическая единица, равная среднему расстоянию от Земли до Солнца – 1 а.е.=1,50×1011м; световой год, т.е. расстояние, которое проходит свет в вакууме за один земной год – 1 св. год = 6, 32×104а.е. = 9,46×1015м; парсек – 1 пс. = 3,2 св. лет = 2,06×105а.е. = 3,09×1016м. Время жизни нашей Вселенной и соответственно Метагалактики, т.е. то, что люди называют возрастом Вселенной, это примерно 13,7 миллиарда лет с точностью до …, пожалуй, лучше чем 10%. Размер Метагалактики, т.е. наблюдаемой части Вселенной, казалось бы можно определить, исходя из того, что свет путешествовал к нам 13,7 млрд. лет, значит это надо умножить на скорость света (м/с) и получится расстояние, на котором мы якобы сейчас видим объекты Вселенной. На самом деле мы видим в несколько раз дальше, чем получим в результате (около 1,6 млрд световых лет), потому что те объекты, которые послали к нам свет 13,7 млрд лет назад, они сейчас от нас находятся дальше, так как Вселенная расширяется. Реальные, т.е. наблюдаемые размеры Метагалактики около 20 млрд. световых лет. Обычная материя практически вся сосредоточена в звездах. В схеме 49 мы собрали терминологические названия основных видов звезд и соответствующие, очень краткие характеристики. При этом внутренняя жизнь звезды регулируется воздействием двух сил: силы притяжения, которая противодействует звезде, удерживает ее, и силы освобождающейся при происходящих в ядре ядерных реакциях. Она, наоборот, стремиться «вытолкнуть» звезду в дальнее пространство. Не вдаваясь в сложные механизмы эволюции, приведем схематически варианты развития звезд главной последовательности.
Схема 49. Виды звезд и их краткие характеристики.
При этом нас, прежде всего, интересует эволюция Солнца (см. схему 50).
Схема 50. Эволюция звезд главной последовательности (варианты развития). Наше Солнце является малой звездой главной последовательности согласно классической диаграммы Герцшпрунга-Ресселла. С эволюцией Солнца взаимосвязана и эволюция Солнечной системы, модель которой приведена на схеме 51.
Схема 51. Модель Солнечной системы
Примечание: В 2006 г. на съезде астрономов было принято отнести планету Плутон, имеющую массу, равную 0,002 массы Земли, к астероидам. Солнце можно структурно разделить на несколько слоев. В центре расположено ядро, именно здесь происходят термоядерные реакции, температура ядра равна примерно 14 млн. градусов, плотность кг/м3, ядро окружает радиоактивная зона. За ней следует конвективная зона. Далее идут фотосфера и хромосфера и, наконец, солнечная корона. Видимой с Земли является фотосфера, именно на ней можно наблюдать солнечные пятна с наличием в них сильных магнитных полей. Хромосфера представляет собой очень плотную солнечную атмосферу и в ней возникают протуберанцы – часто светящиеся выбросы водорода, свидетельствующие о солнечной активности. Солнечная корона – более разряженные слои солнечной атмосферы, но с достаточно высокой температурой от 1 до 2 млн. градусов, хотя температура на самой поверхности Солнца примерно 10 тыс. градусов. Характерно, что из всех планет Солнечной системы только на Земле в результате ее эволюции образовалось поистине фантастическое разнообразие живых существ и самое удивительное появился биосоциокультурный вид – человек разумный (Homo sapiens). Нам представляется, что для понимания фрактальной структуры «стрел времени», в которую естественно включаются космологическая стрела времени вплоть до образования Земли, геологическая стрела времени и биологическая стрела времени, особую роль приобретает антропный принцип. Слабый антропный принцип утверждает, что наблюдаемые свойства Вселенной зависят от человека как наблюдателя, то есть Вселенная такая потому, что мы ее такой видим. Сильный антропный принцип говорит, что Вселенная устроена таким образом, что в ней с неизбежностью должен был появиться человек. Такой подход фактически реанимирует антропоцентрическую идею о человеке как о цели творения. Естественно, что опираясь на концепции современного естествознания, мы непроизвольно уходим от телеогических аспектов в религиозном плане. Однако, Стивен Хокинг доказал, что направления трех базовых «стрел времени», а именно общеизвестной термодинамической (см. лекцию 5), психологической, связывающей наше восприятие времени от прошлого к будущему, и космологической совпадают, иначе не могли бы реализоваться условия для зарождения и развития разумных существ. Очевидно, именно в этом естественнонаучном плане можно говорить и о пересечении отмеченных выше стрел времени с антропологической стрелой времени, включая в нее и антропный принцип. Именно такой подход, на наш взгляд, позволяет согласиться с математически доказанной с использованием теории струн «многоликости Вселенной», т.е. с возможностью реализации множественности Вселенных, или по нашей терминологии «многоликового» гипермира. Тогда наша наблюдаемая Вселенная отличается от гипотетических Вселенных именно реализацией в ней антропного принципа. Мы в данном параграфе ограничимся рассмотрением только космологической стрелы времени нашей наблюдаемой Вселенной (см. схему 52).
Схема 52. Основные этапы космологической шкалы («стрелы») времени.
Представляет очевидный интерес предсказание эволюции нашей Вселенной, Галактики – Млечный путь, Солнца и Земли в будущем. Что касается Вселенной, то очень часто такие оценки делают на основании закона Хаббла: , где - постоянная Хаббла, - расстояние между галактиками, - скорость «разбегания» галактик. Вычислим энергию некоторой галактики, имеющей массу , которая находится на расстоянии от «наблюдателя» (см. рис. 7.1). Энергия этой галактики складывается из кинетической энергии и потенциальной энергии , которая связана с гравитационным взаимодействием галактики с веществом массы , находящимся внутри шара радиуса . Выразим массу через плотность , и, учитывая закон Хаббла, запишем выражение для энергии галактики: . (1) Из этого выражения найдем , т.е. такое значение плотности при котором , т.е. вселенная не расширяется, как при , и не сжимается, как при . Подставив в выражение (1) известные значения (км/с)/106 световых лет и м2/кг×с2, получаем значение критической плотности кг/м3. Самое удивительное, что с учетом плотностей видимой материи 10-34кг/м3, а также плотностей темной материи и темной энергии, мы получаем значение кг/м3, т.е. совпадающее с критической плотностью . Более того, ряд ученых считает, что плотность материи всегда была равна. Таким образом, предсказать будущее сжатие или расширение Вселенной, исходя из закона Хаббла, достаточно сложно. В процессе эволюции Вселенной особая роль принадлежит плотности темной энергии, которая играет роль космологической постоянной в гравитационном уравнении Эйнштейна, задавая, как стало ясно, совместно с темной материей определенную стабильность (статичность) галактик, в том числе и нашей галактики – Млечный путь. Так темная материя, благодаря своей гравитации способствует современному положению галактик, а самое главное, и галактических объектов. Темная энергия усиливает темп расширения Вселенной за счет антигравитации, но одновременно являясь алгебраической суммой энергий всех вакуумных подсистем, очевидно, не изменяет своей плотности, т.е. антигравитация препятствует изменению объема (гравитационному коллапсу) физического вакуума. Методом астрономических наблюдений изучалось влияние темной энергии на движение галактик и их скоплений. Обнаружена удивительная корреляция между плотностью темной энергии (энергией вакуума) и видимой материей в мире. Если бы Вселенная продолжала очень быстро расширяться как в эпоху Большой Космической инфляции, когда, по мнению ряда ученых, произошло отделение антигравитации, т.е. получила простор темная энергия, то галактики, звезды и планеты не успели бы сформироваться. Вещество такой Вселенной находилось бы в состоянии разряженного газа, и человеку места в ней не было бы. Если бы не произошел наблюдаемый в наше время переход от замедленного расширения к ускоренному, то мы получили бы космос, состоящий не из звезд и планет, а из одних черных дыр. В такой Вселенной человек тоже не мог бы существовать. На данном этапе расширения Вселенной с ускорением, нашей Галактике – Млечный путь - ничто не угрожает, ее стабильность обеспечивает темная материя. Единственное, что представляется возможным в диапазоне десятков миллиардов лет, это столкновение нашей Галактики и Галактикой Андромеды. Последующие самые экзотические сценарии эволюции нашей Вселенной настолько удалены по времени, что они представляют исключительно научный, но не утилитарно-практический интерес. Нас же в практическом плане должна интересовать эволюция Солнца (см. схему 51.) и связанная с ней эволюция всей Солнечной системы, которой предстоит еще долгий стабильный период не менее 3-4,5 млрд. лет. Человек же уже достиг «успехов» в своем антропно-экологическом влиянии на эволюцию Земли, к геологической эволюции которой, в рамках изучения ее структурных уровней мы переходим.
Дата добавления: 2014-10-15; Просмотров: 926; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |