Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Периодизация науки




Предпосылки развития науки

Причины возникновения науки

Первой и главной причиной возникновения науки является формирование субъектно-объектных отношений между человеком и природой, между человеком и окружающей его средой. Это связано, в первую очередь, с переходом человечества от собирательства к производящему хозяйству. Так, уже в эпоху Палеолита человек создаёт первые орудия труда из камня и кости — топор, нож, скребло, копьё, лук, стрелы, овладевает огнём и строит примитивные жилища. В эпоху Мезолита человек плетёт сеть, делает лодку, занимается[1] обработкой дерева, изобретает лучковое сверло. В период Неолита (до 3000 г. до н. э.) человек развивает гончарное ремесло, осваивает земледелие, занимается изготовлением глиняной посуды, использует мотыгу, серп, веретено, глиняные, бревенчатые, свайные постройки, овладевает металлами. Использует животных в качестве тягловой силы, изобретает колёсные повозки, гончарное колесо, парусник, меха. К началу первого тысячелетия до нашей эры появляются орудия труда из железа.

Второй причиной формирования науки является усложнение познавательной деятельности человека. «Познавательная», поисковая активность характерна и для животных, но в силу усложнения предметно-практической деятельности человека, освоения человеком различных видов преобразующей деятельности, происходят глубокие изменения в структуре психики человека, строении его мозга, наблюдаются изменения в морфологии его тела.

Развитие науки было составной частью общего процесса интеллектуального развития человеческого разума и становления человеческой цивилизации [2]. Нельзя рассматривать развитие науки в отрыве от следующих процессов:

Формирование речи;

Развитие счёта;

Возникновение искусства;

Формирование письменности;

Формирование мировоззрения (миф);

Возникновение философии.

К одной из первоочередных проблем истории науки относят проблему периодизации.[2, 3] Обычно выделяют следующие периоды развития науки:

Преднаука Пранаука (Преднаука) — начальный этап становления научного знания в рамках цивилизаций Древнего Востока. Иногда начало пранауки отодвигается в первобытное общество[1]. Пранаука сформировалась в рамках школ жрецов, которые аккумулировали социально-полезные знания в области астрономии (неразличимой от астрологии), математики (неразличимой от нумерологии), архитектуры, медицины и алхимии[2]. Систематизация знания шла вокруг решения практических задач. В отечественной научной и учебной литературе преднаука обособляется от протонауки, под которой понимается античный этап формирования науки.) — зарождение науки в цивилизациях Древнего Востока: астрологии, доевклидова геометрия (Геоме́трия (от др.-греч. γῆ — Земля и μετρέω — «мерю») — раздел математики, изучающий пространственные структуры, отношения и их обобщения.), грамоты (Гра́мота (греч. γράμματαе — письмо, писчая бумага) — на Руси X—XVII веков деловой документ (главным образом, так называли акты) и письма (официальные и частные). Термин заимствован из Византии, где grammata обозначала послания, указы а также любые другие письменные документы.), нумерологии (Нумерология — система, традиция или верование о мистических или эзотерических связях между числами и физическими объектами или живыми существами и их сознанием.) (

Античная наука — формирование первых научных теорий (атомизм и составление первых научных трактатов в эпоху Античности: (Атоми́зм — натурфилософская и физическая теория, согласно которой чувственно воспринимаемые (материальные) вещи состоят из химически неделимых частиц — атомов. Возникла в древнегреческой философии[1]. Дальнейшее развитие получила в философии и науке Средних веков и Нового времени.)) астрономия Птолемея (Астроно́мия — наука о Вселенной, изучающая расположение, движение, строение, происхождение и развитие небесных тел и образованных ими систем), ботаника Теофраста (Бота́ника (др.-греч. βοτανικός — «относящийся к растениям», от βοτάνη — «трава, растение») — наука о растениях, раздел биологии.), геометрия Евклида, физика Аристотеля (Физика Аристотеля основана на учении о четырёх элементах (четырёх стихиях). В трудах Аристотеля ведётся речь об отношении между этими стихиями, их развитии, как они воплощаются в явлениях природы и т.п.

Основные постулаты физики Аристотеля:

Естественное место — каждый элемент тяготеет к своему естественному месту, каким-то образом расположенному относительно центра Земли, а значит и центра Вселенной.

Гравитация/Левитация — на объекты действует сила, двигающая эти объекты к их естественному месту.

Прямолинейное движение — в ответ на эту силу тело двигается по прямой линии с постоянной скоростью.

Зависимость скорости от плотности — скорость обратно пропорциональна плотности среды.

Невозможность вакуума — так как скорость движения в вакууме была бы бесконечно большой.

Всепроникающий эфир — каждая точка пространства заполнена материей.

Конечная вселенная — мир конечен, т.е.завершен, следовательно, совершенен; мир ничто не объемлет, из чего следует, что у мира нет места ("место - первая граница объемлющего тела").

Теория континуума — между атомами был бы вакуум, таким образом материя не может состоять из атомов.

Эфир — объекты из надлунного мира сделаны из иной материи, чем земные.

Неизменный и вечный космос — Солнце и планеты — совершенные, неизменяемые сферы.

Движение по окружности — планеты совершают совершенное круговое движение.), а также появление первых протонаучных сообществ в лице Академии (Платоновская Академия — религиозно-философский союз, основанный Платоном приблизительно в 388 году до н. э.[1] близ Афин в садах, посвященных мифическому герою Академу. В Академии разрабатывался широкий круг дисциплин: философия, математика, астрономия, естествознание и другие. Внутри Академии было разделение на старших и младших; основным методом обучения была диалектика (диалог).).

Средневековая магическая наука — формирование экспериментальной науки на примере алхимии Джабира (Алхимия (лат. alchimia, alchymia, от араб. предположительно от египетского «kēme» — чёрный, откуда также греческое название Египта, чернозёма и свинца — «черная земля»; другие возможные варианты: др.-греч. χυμος — «сок», «эссенция», «влага», «вкус», др.-греч. χυμα — «сплав (металлов)», «литье», «поток», др.-греч. χυμευσις — «смешивание», др.-греч. Χιμαιρα — «Химера») — общее название существующих в различных культурах систем трансформации[источник не указан 461 день] как физических предметов (в первую очередь металлов) или человеческого организма, так и духовного).

Научная революция и классическая наука — формирование науки в современном смысле в трудах Галилея, Ньютона, Линнея.

Неоклассическая наука — наука эпохи кризиса классической рациональности: теория эволюции Дарвина (Биологи́ческая эволю́ция (от лат. evolutio — «развёртывание») — естественный процесс развития живой природы, сопровождающийся изменением генетического состава популяций, формированием адаптаций, видообразованием и вымиранием видов, преобразованием экосистем и биосферы в целом), теория относительности Эйнштейна (Тео́рия относи́тельности — термин, введённый в 1906 году Максом Планком с целью показать, как специальная теория относительности (и, позже, общая теория относительности) использует принцип относительности. Часто используется просто как эквивалент понятия «релятивистская физика». В узком смысле включает в себя специальную и общую теорию относительности), принцип неопределенности Гейзенберга (Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей[* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики), гипотеза Большого Взрыва, теория катастроф Рене Тома (Теория катастроф — раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений), фрактальная геометрия Мандельброта (Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической).

Возможно другое деление на периоды:

доклассический (ранняя античность, поиск абсолютной истины, наблюдение и размышление, метод аналогий)

классический (XVI—XVII вв., появляется планирование экспериментов, введён принцип детерминизма, повышается значимость науки)

неклассический (конец XIX в, появление мощных научных теорий, например, теории относительности, поиск относительной истины, становится ясно, что принцип детерминизма не всегда применим, а экспериментатор оказывает влияние на поиск эксперимента)

постнеклассический (конец XX в., появляется синергетика, расширяется предметное поле познания, наука выходит за свои рамки и проникает в другие области, поиск целей науки).

Структура науки и ее основные функции.

Философское понятие объективного бытия включает в себя природу, общество и человека. Соответственно этим трем элементам объективного бытия в науке четко выделяются три сферы знания об этих составных частях бытия. Это содержательный аспект науки.

В зависимости от сферы бытия, а следовательно, и от рода изучаемой действительности различаются три направления научного знания: естествознание - знание о природе, обществознание, знание о различных видах и формах общественной жизни, а также знание о человеке как мыслящем существе. Естественно, эти три сферы не являются и не должны рассматриваться как три части единого целого, которые лишь рядоположены, соседствуют друг с другом. Граница между этими сферами относительна [3].

Вся совокупность научных знаний о природе формируется естествознанием. Его структура является непосредственным отражением логики природы. Общий объем и структура естественнонаучных знаний велики и разнообразны.

Сюда включается знание о веществе и его строении, о движении и взаимодействии веществ, о химических элементах и соединениях, о живой материи и жизни, о Земле и Космосе. От этих объектов естествознания берут свое начало и фундаментальные естественнонаучные направления.

Тела, их движение, превращения и формы проявления на различных уровнях являются объектом физических научных знаний. В силу своего фундаментального характера они лежат в основе естествознания и обусловливают все другие знания.

Химические элементы, их свойства, превращения и соединения отражаются химическими знаниями. Они имеют много точек соприкосновения с физическими знаниями, на основе чего возникает целый ряд смежных дисциплин - физическая химия, химическая физика и др.

Биологические знания охватывают группу знаний о живом, своим предметом изучения они имеют клетку и все от нее производное. В основе биологических знаний лежат знания о веществе, химических элементах. В силу этого на стыке наук возникают такие науки, как биофизика, биохимия и др.

Земля как планета является предметом изучения геологических знаний. Они рассматривают строение и развитие нашей планеты. На стыке с другими группами знаний возникают геохимия, палеонтология, геофизика и др.

Одним из наиболее древних, но в то же время самым современным направлением в науке являются космологические знания, предметом которых является Вселенная как целое. Космология изучает состояния и изменения космических объектов.

Вторым фундаментальным направлением научного знания является обществознание. Предметом его являются общественные явления и системы, структуры, состояния, процессы. Общественные науки дают знания об отдельных разновидностях и всей совокупности общественных связей и отношений.

По своему характеру научные знания об обществе многочисленны, но они могут быть сгруппированы по трем направлениям: социологические, предметом которых является общество как целое; экономические - отражают трудовую деятельность людей, отношения собственности, общественное производство, обмен, распределение и основанные на них отношения в обществе; государственно-правовые знания - имеют в качестве своего предмета государственно-правовые структуры и отношения в общественных системах, их рассматривают все науки о государстве и политические науки [1].

Третье фундаментальное направление научных знаний составляют научные знания о человеке и его мышлении. Человек является объектом изучения большого числа разнообразных наук, которые рассматривают его в различных аспектах. Из всей совокупности наук гуманитарные науки ориентированы на интересы человека, который выступает для них в качестве меры всех вещей. Но сам человек и его мыслительные способности изучаются психологией - наукой о человеческом сознании; логикой - наукой о формах правильного мышления.

Математика - наука о количественных отношениях действительности. Она является междисциплинарной наукой. Ее результаты используются и в естественных, и в общественных науках.

Наряду с указанными основными научными направлениями к отдельной группе знаний должны быть отнесены знания науки о себе самой. Появление этой отрасли знания относится к 20-м годам нашего столетия и означает, что наука в своем развитии поднялась до уровня понимания своей роли и значения в жизни людей. Науковедение сегодня считается самостоятельной, быстро развивающейся научной дисциплиной.

Одним из важнейших условий действительно научного подхода к изучению любого объекта является его анализ в различных аспектах, среди которых, помимо вышеназванного содержательного, одно из главных мест принадлежит структурному. Применительно к научным знаниям этот аспект означает разделение научных знаний на группы в зависимости от их предмета, характера, степени объяснения действительности и практического значения.

В таком случае мы выделяем: фактологические знания - набор систематизированных фактов объективной действительности; теоретические или фундаментальные знания - теории, объясняющие процессы, происходящие в объективной действительности; технико-прикладные знания, или технологии, - знания о практическом приложении фактологических или фундаментальных знаний, в результате чего достигается определенный технический эффект; практически-прикладные, или праксеологические, знания - знания о том экономическом эффекте, который может быть получен в случае применения вышеназванных групп знаний.

В логическом аспекте научное знание представляет собой мыслительную деятельность, высшую форму логического знания, продукт человеческого творчества. Исходным пунктом его является чувственное познание, проходящее от ощущения к восприятию и представлению. После этого происходит переход к рациональному познанию, развивающемуся от понятия к суждению и умозаключению. Этому соответствует уровень эмпирического и теоретического знания.

И, наконец, социальный аспект научного знания представляет его как общественное явление, коллективный процесс исследования и применение результатов этого исследования. В этом аспекте нас интересуют научные учреждения, коллективы, учебные заведения, организации ученых и т.д.

В тесной связи со структурой научного знания находится проблема функций науки. Их выделяется несколько:

1. описательная - выявление существенных свойств и отношений действительности;

2. систематизирующая - отнесение описанного по классам и разделам;

3. объяснительная - систематическое изложение сущности изучаемого объекта, причин его возникновения и развития;

4. производственно-практическая - возможность применения полученных знаний в производстве, для регуляции общественной жизни, в социальном управлении;

5. прогностическая - предсказание новых открытий в рамках существующих теорий, а также рекомендации на будущее;

6. мировоззренческая - внесение полученных знаний в существующую картину мира, рационализация отношений человека к действительности.

Говоря до сих пор о науке и научном знании, мы рассматривали их как уже реально существующий объект исследования, который мы анализировали с формальной точки зрения.

Однако человечество в своей истории накопило самые различные по своему характеру знания, и научные знания являются лишь одним из видов этого знания. Поэтому встает вопрос о критериях научности знаний, что соответственно позволяет отнести их к категории научных или каких-либо других [1-3].




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 6439; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.