КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Показатели вариации
Дециль Квартиль Медиана Мода Структурные средние Степенные средние Те средние величины, которые мы записали, относятся к степенным средним. В наиболее общем виде степенная средняя записывается следующим образом: В зависимости от k и образуются разные виды средних.
Правило мажорантности: Величина средней определяется всеми значениями признака, встречающимися в данном ряду распределения. Различают такие структурные средние, как: (1) мода (2) медиана (3) квартиль (4) дециль (5) перцентиль Это значение признака, которое встречается в ряду распределения чаще, чем другие его значения. В дискретном ряду распределения значения моды определяются визуально. Если же ряд распределения задан как интервальный, то значение моды рассчитывается по следующей формуле: – нижняя граница модального интервала, – величина модального интервала, – частота (вес) интервала, предшествующего модальному, – частота модального интервала, – частота интервала, следующего за модальным. Это центральное значение признака, им обладает центральный член ранжированного ряда. Прежде всего определяется порядковый номер медианы по формуле Для интервального ряда медиана рассчитывается по следующей формуле: – нижняя граница медианного интервала, – величина медианного интервала, – сумма частот (весов) ряда, – сумма накопленных частот (весов) в интервале, предшествующем медианному, – частота медианного интервала.
Первый квартиль вычисляется по формуле: – нижняя граница квартильного интервала, – величина квартильного интервала, – номер квартильного признака, – сумма накопленных частот (весов) в интервалах, предшествующих квартильному, – частота квартильного интервала. Аналогично рассчитывается третий квартиль. Второй же квартиль равен медиане. Рассчитывается по аналогии с расчетом квартиля. Можно найти девять децилей.
Средняя должна исчисляться не просто тогда, когда есть вариация признака, а тогда, когда мы располагаем качественно однородным вариационным рядом. Среднюю как обобщающую характеристику нельзя применять к таким совокупностям, отдельные части которых подчиняются различным законам распределения (или) развития в отношении величины распределяемого признака.
Дата добавления: 2014-10-15; Просмотров: 312; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |