КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основные положения координационной теории
Лекции 16-19. Координационные соединения Координационными называются соединения, содержащие в своем составе многоатомные молекулы или ионы, имеющие центр координации, связанный с частицами (молекулами или ионами), способными к самостоятельному существованию. Несоблюдение хотя бы одного из перечисленных признаков не позволяет отнести то или иное соединение к координационным. Например, сульфат-анион является многоатомной тетраэдрической частицей, имеющей центр координации (атом серы). Однако рассматривать этот анион как комплексную частицу нельзя, поскольку он состоит из частиц, не способных к самостоятельному существованию (катион серы(VI) и двухзарядный анион кислорода). Нельзя отнести к координационным соединениям и хингидрон, представляющий собой продукт соединения хинона и гидрохинона, молекулы которых многоатомны и устойчивы. Действительно, хингидрон
не имеет центра координации. Для подобных объектов более уместен термин "аддукт" (продукт присоединения). Аддукты и координационные соединения нередко объединяют под названием комплексное соединение. Примером классического координационного соединения может служить соль Тассера, полученная еще в 1798 г., и имеющее формулу CoCl3×6NH3 или Это соединение содержит в своем составе многоатомный ион, имеющий центр координации (катион Со3+) и состоящий из частиц, способных к самостоятельному существованию. В основе химии координационных соединений лежит координационная теория А. Вернера, предложенная в 1893 г. Основные принципы современной теории координационных соединений сводятся к следующим положениям: 1. Координационные соединения имеют центрическое строение. Атом или ион, занимающий центральное положение в комплексе, называется центральным атомом (ЦА). Вокруг центрального атома группируются остальные молекулярные или атомные частицы. 2. Ионы или молекулы, непосредственно связанные с ЦА, называются лигандами. Центральный атом и лиганды в своей совокупности образуют внутреннюю (координационную) сферу соединения. 3. Совокупность ионов и молекул, не связанных с ЦА, образует внешнюю сферу. Связь между внутренней и внешней сферами осуществляется за счет сил невалентного взаимодействия (электростатическое притяжение, водородные связи, силы межмолекулярного взаимодействия). В случае соли Тассера центральным атомом является катион Со3+, а в роли лигандов выступают молекулы аммиака. Образуемая ими внутренняя (координационная) сфера выделена квадратными скобками и представляет катион [Co(NH3)6]3+. Заряд этого комплекса компенсируется зарядами трех ионов хлора, образующих внешнюю сферу. Связь комплекса с внешнесферными ионами имеет ионный характер. Важнейшей характеристикой центрального атома является координационное число (КЧ). Координационное число центрального атома - это число мест в координационной сфере, образованной этим ЦА. Оно измеряется числом s-связей, образуемых ЦА со всеми лигандами. Так, для соли Тассера координационное число иона Со3+ равно шести. Координационное число может принимать различные значения. Наиболее часто оно равно 6, 4 и 2. Реже встречаются координационные числа 3, 5 и превышающие 6. Число лигандов во внутренней координационной сфере называют лигандным числом. Поскольку лиганд может занимать во внутренней сфере несколько мест, лигандное число не всегда совпадает с координационным. Число мест, занимаемых лигандом в координационной сфере, называется дентатностью лиганда (от греческого dentatus - имеющий зубы, зубчатый). Дентатность измеряется числом s-связей, образуемых лигандом с центральным атомом. В зависимости от дентатности, лиганды можно подразделить на следующие группы: 1. Монодентатные лиганды, образующие с ЦА одну s-связь. Примером молекулярных монодентатных лигандов могут служить NH3, H2O, CO, ионных – . 2. Бидентантные лиганды, образующие с ЦА две s-связи. Примером бидентатного лиганда может служить этилендиамин H2NCH2CH2NH2 (сокращенное обозначение - en). Это соединение содержит два донорных атома азота и может занимать во внутренней сфере два места. Поэтому в соли Тассера 6 молекул аммиака могут быть замещены тремя молекулами этилендиамина с образованием комплекса [Co(en)3]Cl3: Бидентатными лигандами являются также многие двухзарядные анионы (и др.). Заметим, что бидентатные лиганды могут выступать и в роли монодентатных лигандов. 3. Полидентатные лиганды, образующие с ЦА три и более s-связей. Так, например, триаминоэтиламин может образовывать четыре s-связи типа М←N и соответственно проявлять дентатность 4:
Анион этилендиаминтетрауксусной кислоты (ЭДТА)
способен образовывать с катионом металла 6 s-связей через два атома азота и четыре атома кислорода карбоксильной группы (гексадентатный лиганд). Важной характеристикой комплексов является также форма координационного полиэдра - геометрической фигуры, получающейся при соединении координационных мест условными прямыми. Наиболее распространенными являются линейные (КЧ = 2), тетраэдрические (КЧ =4), квадратные (КЧ = 4) и октаэдрические (КЧ = 6) комплексы. Например, для соли Тассера координационный полиэдр имеет форму октаэдра.
Классификация координационных соединений Координационные соединения исключительно разнообразны, а число их теоретически бесконечно велико. Действительно, способность к комплексообразованию присуща почти всем химическим элементам, а в качестве лигандов могут выступать как неорганические, так и органические молекулы и ионы. В результате число возможных координационных соединений многократно больше числа простых органических и неорганических соединений. Многообразие координационных соединений требует четкой классификации этих химических объектов. Существует несколько систем классификации координационных соединений, отличающихся по тому, какой признак положен в основу классификации. Важнейшими классификационными признаками являются: Заряд комплекса. По этому признаку координационные соединения делятся на 4 группы: 1. Координационные соединения - неэлектролиты. Внутренняя (координационная) сфера соединений данного типа не имеет заряда, внешнесферные ионы отсутствуют. Примером подобных соединений могут служить [Pt(NH3)2Cl2], [Co(NH3)3(CN)3] и др. 2. Катионные комплексы. В состав соединения входит комплексный катион, заряд которого компенсируется простыми внешнесферными анионами. Примером таких соединений могут служить [Co(NH3)6]Cl3, [Cr(NH3)6]Br3 и др. 3. Анионные комплексы. Соединение состоит из комплексного аниона и простых внешнесферных катионов (например, K3[Fe(CN)6], K2[HgI4] и др.). 4. Катионно-анионные координационные соединения. И катион, и анион соединения являются комплексными ионами (например, [Cu(NH3)4][PtCl4], [Cr(H2O)6][Co(CN)6] и др.). Координационные соединения 1 группы называют неионогенными, 2 - 4 групп - ионогенными. Число центральных атомов (ядерность). Соединения подразделяются на группы по числу центров координации во внутренней координационной сфере. Различают: 1. Моноядерные комплексы. Внутренняя координационная сфера имеет один центр координации (например, [Fe(CO)5], или [Ni(NH3)6]Br2). 2. Биядерные комплексы. Внутренняя координационная сфера имеет два центральных атома (два центра координации), например, [Mn2(CO)10], или [(NH3)4Co(OH)2Co(NH3)4](SO4)2. 3. Полиядерные комплексы. Имеют более двух центров координации, например, [Со4(СО)12]. Биядерные и полиядерные комплексы могут быть мостиковыми и безмостиковыми. В случае мостиковых комплексов во внутренней координационной сфере имеются лиганды, связывающие два и более центральных атома. Таков, например, комплекс [(NH3)4Co(OH)2Co(NH3)4]4+, в котором функцию мостиков выполняют гидроксид-ионы. В безмостиковых комплексах центральные атомы связаны между собой непосредственно. Так, в комплексе [Re2Cl8]2- атомы рения связаны между собой четверной связью, и каждый из них координирует 4 иона хлора (см. раздел 5.2.4). Подобные комплексы, в которых реализуются ковалентные связи металл-металл, называются кластерами. Природа лигандов. Центральные атомы координационных соединений могут координировать как одинаковые лиганды (гомолигандные комплексы), так и лиганды различные (гетеролигандные комплексы). Гомолигандые комплексы в зависимости от природы лиганда подразделяются на ряд типов. Важнейшими из них являются: 1. Аквакомплексы. Лигандами являются молекулы воды (например, [Al(H2O)6]Cl3, [Be(H2O)4]SO4 и др.). 2. Амминокомплексы (аммиакаты). Функцию лиганда выполняют молекулы аммиака (например, [Co(NH3)6]Cl3, [Cu(NH3)4](OH)2 и др.). 3. Гидроксокомплексы. Центральный атом координирует гидроксид-анион (например, Na3[Al(OH)6], K2[Be(OH)4]). 4. Ацидокомплексы. Содержат в качестве лигандов анионы кислотных остатков (например, K3[Fe(CN)6], Na3[AlF6]). 5. Комплексные гидриды. Лиганд - отрицательный ион водорода. Примером гидридных комплексов могут служить гидридоалюминаты и гидридобораты (Li[AlH4], K[BH4]). 6. Карбонилы. Координационные соединения, в которых роль лигандов выполняют молекулы оксида углерода(II) (например, [Ni(CO)4], [Fe2(CO)9], [Fe3(CO)12]). 7. Пи-комплексы (p-комплексы), в которых центральный атом координирует лиганд за счет делокализованных кратных связей или ароматической системы, например: бис(циклопентадиенил)железо(II), ферроцен
Наличие или отсутствие циклов во внутренней сфере. В этом плане различают: 1. Ациклические комплексы. Центральный атом и лиганд образуют фрагмент открытой цепи (например, [Cu(NH2C2H5)4]SO4). 2. Хелаты. Координационные соединения, содержащие во внутренней координационной сфере циклы, включающие центральный атом. Так, например, хелатом является комплекс меди с этилендиамином содержащий два пятичленных цикла, включающих атом меди. Хелаты образуют только бидентатные и полидидентатные лиганды. Если лиганд содержит как нейтральные, так и отрицательно заряженные электрондонорные группы, полностью нейтрализующие заряд центрального атома, то такие хелаты-неэлектролиты называются внутренними координационными соединениями или внутрикомплексными солями. Внутрикомплексной солью, например, является хелат, образуемый катионом Cu2+ c анионом аминоуксусной кислоты и других a-аминокислот.
Дата добавления: 2014-10-17; Просмотров: 1786; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |