Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Маршрути незамкнені (ланцюги, шляхи) і замкнені (цикли, контури). Повнота. Зв’язність. Сильна зв’язність




 

Коли задають або шукають певну послідовність ребер (дуг), то говорять про маршрути у графах..

Означення 2.1.13. Скінченну послідовність ребер (дуг) графа (не обов’язково різних) називають маршрутом довжини п, якщо існує послідовність вершин (не обов’язково різних), таких що .

Вершини і називають кінцевими або термінальними.

Означення 2.1.4. Маршрут називають відкритим або незамкненим, якщо і замкненим у протилежному випадку.

Означення 2.1.5. Незамкнений маршрут, у якого немає ребер (дуг), що повторюються, називають ланцюгом для неорієнтованого і шляхом для орієнтованого графа.

Означення 2.1.6. Замкнений маршрут, у якого немає ребер (дуг), що повторюються, називають циклом для неорієнтованого і контуром для орієнтованого графа.

Кажуть, що граф ациклічний або без контурний, якщо він не має циклів чи контурів.

Наприклад,

– незамкнений маршрут;

– замкнений маршрут;

– ланцюг;

– цикл.

 

Граф називають повним, якщо будь-які його дві вершини суміжні.

Орієнтований граф G =(Х, Г) називають повним, якщо з того, що слідує, що .

Означення 2.1.7. Неорієнтований граф G =(Х, Г) називають зв’язним, якщо в ньому існує ланцюг між кожною парою вершин.

Властивості зв’язних графів:

1) граф зв’язний тоді і тільки тоді, коли множину його вершин не можна розбити на дві непорожні підмножини та так, що дві граничні точки кожного ребра були в одній і тій самій множині;

2) у зв’язному графі довільні два шляхи максимальної довжини мають спільну вершину;

3) якщо граф G =(Х, Г) – зв’язний, то граф G’ =(Х, Г-u), отриманий в результаті видалення циклічного ребра и, також зв’язний.

Означення 2.1.8. Орієнтований граф називають зв’язним, якщо зв’язним є неорієнтований граф, що лежить в його основі.

Означення 2.1.9. Орієнтований граф G =(Х, Г) називають сильно зв’язним, якщо для кожної пари різних вершин і існує шлях здо і навпаки – з до .




Поделиться с друзьями:


Дата добавления: 2014-10-17; Просмотров: 407; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.