Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Text 10




Text 9

Text 8

Modern chemical engineering

Text 7

 

The modern discipline of chemical engineering encompasses much more than just process engineering. Chemical engineers are now engaged in the development and production of a diverse range of products, as well as in commodity and specialty chemicals. These products include high performance materials needed for aerospace, automotive, biomedical, electronic, environmental and space and military applications. Examples include ultra-strong fibers, fabrics, dye-sensitized solar cells, adhesives and composites for vehicles, bio-compatible materials for implants and prosthetics, gels for medical applications, pharmaceuticals, and films with special dielectric, optical or spectroscopic properties for opto-electronic devices. Additionally, chemical engineering is often intertwined with biology and biomedical engineering. Many chemical engineers work on biological projects such as understanding biopolymers (proteins) and mapping the human genome. The line between chemists and chemical engineers is growing ever more thin as more and more chemical engineers begin to start their own innovation using their knowledge of chemistry.

 

 

Reverse osmosis is a filtration process typically used for water. It works by using pressure to force a solution through a membrane, retaining the solute on one side and allowing the pure solvent to pass to the other side. This is the reverse of the normal osmosis process, which is the natural movement of solvent from an area of low solute concentration, through a membrane, to an area of high solute concentration when no external pressure is applied.

Procedure

Formally, reverse osmosis is the process of forcing a solvent from a region of high solute concentration through a membrane to a region of low solute concentration by applying a pressure in excess of the osmotic pressure.

The membranes used for reverse osmosis have a dense barrier layer in the polymer matrix where most separation occurs. In most cases the membrane is designed to allow only water to pass through this dense layer while preventing the passage of solutes (such as salt ions). This process requires that a high pressure be exerted on the high concentration side of the membrane, usually 2–17 bar (30–250 psi) for fresh and brackish water, and 40–70 bar (600–1000 psi) for seawater, which has around 24 bar (350 psi) natural osmotic pressure which must be overcome.

This process is best known for its use in desalination (removing the salt from sea water to get fresh water), but it has also been used to purify fresh water for medical, industrial and domestic applications since the early 1970s.

When two solutions with different concentrations of a solute are mixed, the total amount of solutes in the two solutions will be equally distributed in the total amount of solvent from the two solutions.

Instead of mixing the two solutions together, they can be put in two compartments where they are separated from each other by a semipermeable membrane. The semipermeable membrane does not allow the solutes to move from one compartment to the other, but allows the solvent to move. Since equilibrium cannot be achieved by the movement of solutes from the compartment with high solute concentration to the one with low solute concentration, it is instead achieved by the movement of the solvent from areas of low solute concentration to areas of high solute concentration. When the solvent moves away from low concentration areas, it causes these areas to become more concentrated. On the other side, when the solvent moves into areas of high concentration, solute concentration will decrease. This process is termed osmosis. The tendency for solvent to flow through the membrane can be expressed as "osmotic pressure", since it is analogous to flow caused by a pressure differential.

In reverse osmosis, in a similar setup as that in osmosis, pressure is applied to the compartment with high concentration. In this case, there are two forces influencing the movement of water: the pressure caused by the difference in solute concentration between the two compartments (the osmotic pressure) and the externally applied pressure.

 

 

A membrane reactor is a piece of chemical equipment that combines a catalyst-filled reaction chamber with a membrane to add reactants or remove products of the reaction.

Chemical reactors making use of membranes are usually referred to as membrane reactors. The membrane can be used for different tasks:

Separation

Selective extraction of reactants

Retention of the catalyst

Distribution/dosing of a reactant

Catalyst support (often combined with distribution of reactants)

Membrane reactors are an example for the combination of two unit operation in one step e.g. membrane filtration with the chemical reaction.

In biological systems membranes fulfil a number of essential functions. The compartmentalisation of biological cells is achieved by membranes. The semi-permeability allows to separate reactions and reaction environments. A number of enzymes are membrane bound and often mass transport through the membrane is active rather than passive as in artificial membranes allowing the cell to keep up gradients for example by using active transport of protons or water.

The use of a natural membrane is the first example of the utilization for a chemical reaction. By using the selective permeability of a pigs bladder water could be removed from a condensation reaction to shift the equilibrium position of the reaction towards the condensation products according to the principle of Le Châtelier.

Continuous oscillatory baffled reactor (COBR) is a tubular plug flow reactor. The mixing in COBR is achieved by the combination of fluid oscillation and orifice baffles, allowing plug flow to be achieved under laminar flow conditions with the net flow Reynolds number just about 100.

Semi-batch reactor

A semi-batch reactor is operated with both continuous and batch inputs and outputs. A fermenter, for example, is loaded with a batch, which constantly produces carbon dioxide, which has to be removed continuously. Analogously, driving a reaction of gas with a liquid is usually difficult, since the gas bubbles off. Therefore, a continuous feed of gas is injected into the batch of a liquid. An example of such a reaction is chlorination.

Catalytic reactor

Although catalytic reactors are often implemented as plug flow reactors, their analysis requires more complicated treatment. The rate of a catalytic reaction is proportional to the amount of catalyst the reagents contact. With a solid phase catalyst and fluid phase reagents, this is proportional to the exposed area, efficiency of diffusion of reagents in and products out, and turbulent mixing or lack thereof. Perfect mixing cannot be assumed. Furthermore, a catalytic reaction pathway is often multi-step with intermediates that are chemically bound to the catalyst; and as the chemical binding to the catalyst is also a chemical reaction, it may affect the kinetics.

The behavior of the catalyst is also a consideration. Particularly in high-temperature petrochemical processes, catalysts are deactivated by sintering, coking, and similar processes.

A common example of a catalytic reactor is the catalytic converter following a motor.

 

 

 




Поделиться с друзьями:


Дата добавления: 2014-10-17; Просмотров: 860; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.