КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Понятие об основных системах счисления
Под системой счисления понимается способ представления любого числа с помощью некоторого алфавита символов, называемых цифрами. Все системы счисления делятся на позиционные и непозиционные. Непозиционными называются такие системы счисления, в которых каждый символ сохраняет своё значение независимо от места его положения в числе. Примером непозиционной системы счисления является римская система, в которой символам I, V, X, L, С, D, М соответствуют числа 1, 5, 10, 50, 100, 500, 1000. Недостатком этой системы является сложность формальных правил записи чисел и выполнения арифметических действий над ними. Система счисления называется позиционной, если значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Это значение находится в однозначной зависимости от позиции, занимаемой цифрой, по некоторому закону. Примером позиционной системы счисления является десятичная система, используемая в повседневной жизни. Количество различных цифр, употребляемых в позиционной системе, определяет название системы счисления и называется основанием системы счисления. Так, в десятичной системе используются десять цифр (от 0 до 9), основанием этой системы является число десять. В позиционных системах счисления числа записываются в виде последовательности символов: N = an an- 1 ... a 1 a 0, a -1 a -2 ... а-m ( р ),(3.1) где N – число; ai – цифры (символы) числа; p – основание системы счисления; n, m – порядковый номер разряда для целой и дробной частей числа соответственно. Здесь и в дальнейшем основание системы счисления, в которой представлено число, будем указывать в виде нижнего индекса в скобках. В этой последовательности запятая отделяет целую часть числа от дробной (коэффициенты при положительных степенях, включая нуль, от коэффициентов при отрицательных степенях). Значение числа, записанного в виде (3.1), может быть найдено по следующей формуле: N = an·pn+an- 1 ·pn -1 +... +a 0 ·p 0 +a -1 ·p -1 +a -2 ·p -2 +...+а-m·p-m. (3.2) В системе счисления с основанием р используется р цифр – символы от 0 по (р -1). Число, равное основанию, запишется 10(р). В десятичной системе счисления мы производим вычисления по формуле (3.2), практически не задумываясь. Возьмём для примера десятичное число 123,45: 122130,4-15-2 (10) = 1·102+2·101+3·100+4·10-1+5·10-2 = 100+20+3+0,4+0,05. Помимо десятичной, могут применяться и другие позиционные системы счисления: двоичная, восьмеричная, шестнадцатеричная. Так, в двоичной системе счисления используются две цифры: 0 и 1. Особая значимость двоичной системы счисления в информатике определяется тем, что внутреннее представление любой информации в компьютере является двоичным кодом.
Дата добавления: 2014-10-22; Просмотров: 400; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |