Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Обобщенный закон Гука




Деформации при объемном напряженном состоянии.

 

Рассматривая вопросы прочности при объемном и плоском напряженных состояниях, необходимо в соответствии с основными гипотезами считать, что материал изотропный, следует закону Гука, а деформации малы.

Изучая центральное растяжение, сжатие, было установлено, что относительные продольная и поперечная деформации определяются выражениями

, (4.12)

Эти равенства выражают закон Гука при простом растяжении или сжатии, т.е. при линейном напряженном состоянии (рис. 4.14).

Рассмотрим зависимость между напряжениями и деформациями в случае объемного напряженного состояния.

Рис.4.14
Применяя принцип суперпозиции, объемное напряженное состояние изобразим как сумму трех линейных напряженных состояний (рис. 4.15). В этом случае деформацию по направлению первого главного напряжения s1 можно записать , где , , - относительные удлинения в

 
 

направлении s1, вызванные соответственно действием только

Рис. 4.15

 

напряжениями s1, s2, s3.

Поскольку является для напряжения s1 продольной деформацией, а , - поперечными деформациями, то из формул (4.12) следует:

, , . (4.13)

Складывая эти величины, получим .

Аналогично получаются выражения для двух других главных удлинений. В результате

(4.14)

.

Эти формулы носят название обобщенного закона Гука для изотропного тела, т. е. определяют зависимость между линейными деформациями и главными напряжениями в общем случае объемного напряженного состояния. Из этих формул легко получить закон Гука для плоского напряженного состояния. Например, :

Выражения (4.14) справедливы не только для главных деформаций, но и для относительных деформаций по любым трем взаимно перпендикулярным направлениям.

При выводе аналитического выражения обобщенного закона Гука в этом случае будем

исходить из условия, что угловые деформации не зависят от нормальных напряжения, а ли-нейные деформации не зависят от касательных напряжений. В этом случае относительное удлинение по направлению оси х будет обусловлено напряжением σх и равно . Напряжениям в этом направлении будут соответствовать удлинения и .По аналогии получим такие же выражения для и .

Таким образом,

 

(4.15)

.

Угловые деформации определяются соответствующими касательными напряжениями

(4.16)

Совокупность деформаций, возникающих по различн ым направлениям и в различных плоскостях, проходящих через данную точку, называется деформированным состоянием в точке.

Наряду с линейной и угловой деформацией в сопротивлении материалов приходится рассматривать иногда и объёмную деформацию, т.е., относительное изменение объема в точке. Линейные размеры ребер элементарного параллелепипеда в результате деформации меняются и становятся равными . Абсолютное приращение объёма определится разностью

-.

Раскрывая скобки и пренебрегая произведениями линейных деформаций, как величинами второго порядка малости, получим .

Относительное изменение объёма обозначается буквой е и определится из отношения

е.

Заменив деформации их выражениями по закону Гука, получим

e (4.17)

Это соотношение на ряду с формулами (4.14)-(4.16) относится к обобщенному закону Гука.

 

4.8 П отенциальная энергия деформации




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 583; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.