Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теории предельных напряженных состояний




 

Задачей теорий предельных напряженных состояний является оценка прочности детали при известном напряженном состоянии в её опасной точке. Эта задача решается просто при простых деформациях, в частности для одноосного напряженного состояния, так как в этом случае значения предельных (опасных) напряжений достаточно просто установить опытным путем.

Предельное (опасное) напряженное состояние наступает, когда напряжения в детали достигают значений, соответствующих началу разрушения (при хрупком состоянии материала) или появлению остаточных деформаций (в случае пластичес-кого состояния материала). Испытание образцов из данного материала при одноосном растяжении или сжатии позволяет легко установить значения опасных напряжений(σ0 ): предел прочности для хрупких и предел текучести для пластических материалов, т.е., σ0= σв, или σ0= σт. А

условие прочности в любой точке детали при линейном напряженном состоянии примет вид

, где =, =.

Если в точках детали два или все три главных напряжений σ1, σ2, σ3 отличны от нуля, то в этих случаях, как показывают опыты, для одного и того же материала опасное состояние может наступить при различных предельных значениях главных напряжений , т.е., предельное состояние будет зависеть не только от значений главных напряжений, но и от соотношений между ними. Экспериментально установить предельные значения главных напряжений очень сложно не только из-за большого количества опытов, но и из-за технических порой непреодолимых трудностей.

Другой путь решения этой задачи заключается в выборе критериев прочности (критериев предельного напряженного состояния). В этом случае вводится гипотеза о преимущественном влиянии на прочность какого-то определенного фактора, полагая, что нарушение прочности материала при любом напряженном состоянии возможно тогда, когда этот фактор достигает своего предельного значения, величина которого может быть определена на основании простых опытов на растяжение. Такой подход позволяет сопоставить сложное напряженное состояние с линейным напряженным состоянием и установить эквивалентное (расчетное) напряжение, обеспечивающее в обеих случаях одинаковый коэффициент запаса.

Выбранные рассмотренным образом критерии прочности часто называют теориями прочности. Рассмотрим некоторые из этих теорий.

Первая теория прочности – теория наибольших нормальных напряжений была предложена в1638 году Галилео Галилеем. Согласно этой теории нарушение прочности в общем случае сложного напряженного состояния наступает, когда наибольшее нормальное напряжение достигает своего предельного значения σ0. В этом случае условие прочности будет следующим: σ1или для материалов одинаково работающих на растяжение, сжатие; σ1р или с для материалов неодинаково сопротивляющихся растяжению, сжатию.

Таким образом, первая теория прочности из трёх главных напряжений учитывает толь-ко одно наибольшее, считая, что два других на прочность не влияют.

Опыты показали, что эта теория дает удовлетворительные результаты только для весь-ма хрупких материалов.

Вторая теория прочности – теория наибольших линейных деформаций была предложена в1686 году Бойли Мариоттом. Согласно этой теории нарушение прочности в общем случае сложного напряженного состояния наступает, когда наибольшая линейная деформация достигает своего предельного значения ε0, которое определяется при простом растяжении, сжатии. Таким образом, разрушение наступает при . А условие прочности будет следующим: (5.1)

Так как может принимать значения равныеили , то левая часть условия прочности (5.1) может быть записана с использованием обобщенного закона Гука

или . (5.2)

При простом растяжении (5.3)

После подстановки (5.2), (5.3) в условие прочности (5.1) получим

(5.4)

(5.5)

Опытная проверка этой теории показала, что она, как и первая теория, дает удовлетворительные результаты лишь для весьма хрупких материалов.

Третья теория прочности – теория наибольших касательных напряжений была предложена в 1773 году Кулоном. В этой теории в качестве критерия прочности принята величина наибольшего касательного напряжения, а нарушение прочности в общем случае сложного напряженного состояния наступает, когда наибольшие касательные напряжения достигают своего предельного значения τ0, т.е., разрушение наступает при . Предельное значение τ0 определяется при простом растяжении.

Условие прочности - . (5.6)

Так как , а для одноосного растяжения, то из равенства (5.6) следует условие прочности по третьей теории

(5.7)

Эта теория прочности хорошо подтверждается экспериментально для материалов, одинаково работающих на растяжение и сжатие. Её недостатком является то, что она не учитывает влияния на прочность материала среднего по величине главного напряжения σ2

Если материал не одинаково сопротивляется растяжению, сжатию, то Мор предложил следующее условие прочности, называемое теорией Мора

, (5.8)

где для пластических, для хрупких материалов, а σТр, σТс, σвр, σвс пределы текучести и пределы прочности материала при растяжении и сжатии,

Использование этой теории затруднено, так как не для всех материалов есть данные для определения коэффициента «k».

Четвёртая теория прочности – теория октаэдрических касательных напряжений

(энергетическая теория прочности), предложенная Губертом в1904 году.

Условие прочности с указанным критерием

IY (5.9)

Левая часть этого выражения определяется известной формулой

(5.10)

Для правой части при одноосном растяжении σ1= σ, σ2= σ3=0, тогда

, IY (5.11)

После подстановки (5.10), (5.11) в выражение (5.9) получим формулу, определяющую условие прочности по четвертой теории предельного напряженного состояния.

σэквIV= (5.12)

Контрольные вопросы

  1. Что называется напряженным состоянием в точке?
  2. Сколько и какие компоненты напряжений определяют напряженное состояние в точке?
  3. В чем заключается закон парности касательных напряжений?
  4. Какие площадки называются главными?
  5. Какие напряжения называются главными?
  6. Виды напряженного состояния?
  7. Как вычисляются напряжения на произвольных площадках, повернутых от глав- ных на угол (альфа), аналитическим способом при плоском напряжённом состоянии?
  8. Как вычисляются напряжения на произвольных площадках, повернутых от главных на угол альфа, графическим способом при плоском напряжённом состоянии?
  9. Как определяются главные напряжения и положение главных площадок аналитическим способом при плоском напряжённом состоянии?
  10. Как определяются главные напряжения и положение главных площадок графическим способом при плоском напряжённом состоянии?
  11. Обобщенный закон Гука для главных площадок при объёмном напряжённом состоянии?
  12. Обобщенный закон Гука для произвольных площадокпри объёмном напряжённом состоянии?
  13. Условие прочности по третьей теории прочности?
  14. Условие прочности по четвёртой теории прочности?




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 1930; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.