Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Волновое сопротивление и отражение




Особенности распространения ультразвука в тканях тела человека.

Диапазоне частот.

Человеческого уха воспринимать упругие колебания среды только в ограниченном

Деление на ультразвук, звук и инфразвук условно. В основе такого деления - свойство

Инфразвуковых волн, имеющих частоту ниже нижней границы слышимого звука.

Но своей природе ультразвуковые волны не отличаются от звуковых, а также

Границу слышимого звука.

Физически тело человека представляет собой неоднородную среду с участками различной плотности и акустических свойств, разделёнными фазовыми поверхностями на различные области.

При прохождении ультразвука в теле человека имеются следующие особенности:

1) Скорость ультразвука в тканях тела человека зависит от вида ткани и тканевой среды. Её значения (м/с) для отдельных тканей следующие:

кровь 1543

кость 3270

мышцы 1568

печень 1570

2) Ткани тела человека сильно рассеивают и отражают ультразвук. Причина — морфологическая неоднородность тканей, наличие множественных поверхностей раздела,
различия в акустических сопротивлениях. Например, акустическое
сопротивление черепа и крови различаются в 3.5 раза.

3) В тканях тела человека происходит сильное ослабление ультразвуковой волны вследствие её поглощения. Пример: значение коэффициента поглощения черепа в 14 раз больше коэффициента поглощения мозга.

Волновое сопротивление - сопротивление, которое встречает электромагнитная волна при распространении вдоль однородной линии без отражения:

где U п и I п - напряжение и ток падающей волны;

U от и I от - то же отраженной волны.

Таким образом, величина волнового сопротивления не зависит от длины кабельной линии и постоянна в любой точке цепи.

В общем виде волновое сопротивление - комплексная величина и может быть выражена через действительную и мнимую части:

В табл. 3-1 приведены формулы для расчета Z в α θ β.

Волновое сопротивление коаксиального или одножильного кабеля в металлической оболочке

У изоляционных материалов, у которых диэлектрическая проницаемость почти не зависит от частоты,

где 3335,8 - постоянная, принятая МЭК;- коэффициент укорочения длины волны.

При расчете радиочастотных кабелей стремятся получить оптимальную конструкцию, обеспечивающую высокие электрические характеристики при наименьшем расходе материалов. Так, например, при использовании меди для внутреннего и внешнего проводников радиочастотного кабеля минимальное затухание достигается при отношении, ом, максимальная электрическая прочность - при, ом и максимум передаваемой мощности - при, ом.

Точность и стабильность параметров кабеля зависят от величины допусков диаметров внутреннего и внешнего проводников и стабильности ε.

Зависимость волнового сопротивления симметричного кабеля от частоты приведена на рис. 3-7. Модуль волнового сопротивления Z B с изменением частоты уменьшается отпри f = 0 дои остается неизменным во всей области высоких частот. Угол волнового сопротивления равен нулю при f = 0 и на высоких частотах. На тональных частотах (f ≈ 800 гц) угол волнового сопротивления - наибольший. В кабельных линиях преобладает емкостная составляющая волнового сопротивления, и поэтому угол волнового сопротивления всегда отрицателен, а по величине не превышает 45°.

Рис. 3-7. Зависимость волнового сопротивления симметричного кабеля от частоты.

В кабельной линии, однородной по электрическим характеристикам на всем протяжении от генератора до приемника, с нагрузкой по концам, имеющей сопротивление, равное волновому (Z r = Z n = Z B), вся передаваемая электромагнитная анергия полностью поглощается приемником без отражения.

В неоднородных линиях и при несогласованных нагрузках в местах электрических несогласованности возникают отраженные волны и часть энергии возвращается к началу линии. Передаваемая энергия при несогласованной нагрузке значительно меньше, чем при согласованной.

Отраженные волны искажают частотную характеристику собственного волнового сопротивления кабеля. В этом случае на входе линии не волновое, а входное сопротивление Z вх.

Соотношение между энергией, поступающей к приемнику, и энергией отраженной зависит от сопротивлений приемника Z B и волнового Z B и характеризуется коэффициентом отражения

При согласованной нагрузке (Z n = Z в) коэффициент отражения равен нулю, и энергия полностью поглощается приемником. При коротком замыкании (Z п = 0) и режиме холостого хода (Z n = ∞) коэффициенты отражения равны соответственно - 1 и + 1.

Для обеспечения хорошего качества связи и телевизионной передачи по коаксиальному кабелю необходимо, чтобы отклонение волнового сопротивления ΔZ не превышало 0,45 ом, что соответствует коэффициенту отражения

В результате деформаций или наличия эксцентриситета в расположении внутреннего проводника по отношению к внешнему параметры кабеля могут оказаться неравномерно распределенными по его длине. В местах неоднородностей происходят отклонения волнового сопротивления от номинального.

Волновое сопротивление спиральных кабелей (кабелей задержки)

Волновое сопротивление двухкоаксиальных кабелей (с индивидуальными экранами поверх изоляции) вычисляют по формулам для коаксиальных кабелей; оно равно сумме волновых сопротивлений обоих кабелей.

Волновое сопротивление симметричного кабеля в области частот f = 15 000 кгц и выше:

неэкранированного

экранированного

Входным сопротивлением Z вх называется сопротивление на входе линии при любом нагрузочном сопротивлении на ее конце и выражается отношением напряжения U 0 к току I oв начале линии:

где.

Таблица 3 - 1

Приближенные формулы для расчета вторичных параметров передачи кабелей связи

Область применения формул Соотношение между R и ωL Расчетные формулы
α, неп/км β, рад/км Z в, ом
Постоянный ток (f = 0) ωL = 0  
Тональные частоты (f < 800 гц)
Высокие частоты и кабели с повышенной индуктивностью
Промежуточные частоты

Волново́е сопротивле́ние

в акустике, в газообразной или жидкой среде — отношение звукового давления р в бегущей плоской волне (См. Волны) к скорости v колебания частиц среды. В. с. характеризует степень жёсткости среды (т. е. способность среды сопротивляться образованию деформаций) в режиме бегущей волны. В. с. не зависит от формы волны и выражается формулой: p/v = ρ c,где ρ — плотность среды, с — скорость звука. В. с. представляет собой Импеданс акустический среды для плоских волн. Термин «В. с.» введён по аналогии с В. с. в теории электрических линий; при этом давление соответствует напряжению, а скорость смещения частиц — электрическому току.

В. с. — важнейшая характеристика среды, определяющая условия отражения и преломления волн на её границе. При нормальном падении плоской волны на плоскую границу раздела двух сред коэффициент отражения определяется только отношением В. с. этих сред; если В. с. сред равны, то волна проходит границу без отражения. Понятием В. с. можно пользоваться и для твёрдого тела (для продольных и поперечных упругих волн в неограниченном твёрдом теле и для продольных волн в стержне), определяя В. с. как отношение соответствующего механического напряжения (См. Напряжение), взятого с обратным знаком, к скорости частиц среды.

Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

В акустике отражение является причиной эха и используется в гидролокации. Вгеологии оно играет важную роль в изучении сейсмических волн. Отражение наблюдается на поверхностных волнах в водоёмах. Отражение наблюдается со многими типами электромагнитных волн, не только для видимого света. Отражение УКВ и радиоволн более высоких частот имеет важное значение для радиопередач и радиолокации. Даже жёсткое рентгеновское излучение и гамма-лучи могут быть отражены на малых углах к поверхности специально изготовленными зеркалами. В медицине отражение ультразвука на границах раздела тканей и органов используется при проведении УЗИ-диагностики.

Количественно коэффициент отражения равен отношению потока излучения, отраженного телом, к потоку, упавшему на тело[1]:

Сумма коэффициента отражения и коэффициентов поглощения, пропускания и рассеяния равна единице. Это утверждение следует из закона сохранения энергии.

В тех случаях, когда спектр падающего излучения настолько узок, что его можно считать монохроматическим, говорят о монохроматическом коэффициенте отражения. Если спектр падающего на тело излучения широк, то соответствующий коэффициент отражения иногда называют интегральным.

В общем случае значение коэффициента отражения тела зависит как от свойств самого тела, так и от угла падения, спектрального состава и поляризации излучения. Вследствие зависимости коэффициента отражения поверхности тела от длины волны падающего на него света визуально тело воспринимается как окрашенное в тот или иной цвет.

1. Падающий луч, отраженный луч и перпендикуляр в точке падения лежат в одной плоскости


2. Угол падения равен углу отражения

α=β




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 3275; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.