Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дифракция Френеля на круглом отверстии и диске




Метод зон Френеля

Расчет интерференции вторичных волн сводится к интегрированию, которое часто бывает затруднительным. Для упрощения вычислений при определении амплитуды волны в заданной точке пространства Френель предложил разбивать поверхность фронта волны на зоны (зоны Френеля) так, что волны от соседних зон приходят в точку наблюдения в противофазе и, вычитаясь, ослабляют друг друга.

Применим метод зон Френеля для расчета дифракции света.

Различают два случая дифракции света:

1. Дифракция Френеля или дифракция в сходящихся лучах, когда на препятствие падает плоская или сферическая волна, и дифракционная картина наблюдается на экране, находящемся на конечном расстоянии от него (см. 4.3).

2. Дифракция Фраунгофера или дифракция в параллельных лучах, когда на препятствие падает плоская волна, и дифракционная картина наблюдается на экране, который находится в фокальной плоскости собирающей линзы, установленной на пути прошедшего через препятствие света (см. 4.4).

4.3.1. Дифракция Френеля на круглом отверстии

Сферическая волна, распространяющаяся из точечного источника монохроматического света S, встречает на своем пути экран с круглым отверстием, диаметр которого d= BC. Пусть Ф – фронт волны, который является частью поверхности сферы. Разобьем поверхность фронта на зоны Френеля (см. рис.2) так, что волны от соседних зон приходят в точку наблюдения М в противофазе. Тогда амплитуда результирующей волны в точке М

А=А1234+…Аm, (1)

где Аi амплитуда волны, пришедшей от i -ой зоны Френеля. Перед Аm берется знак плюс, если m – нечетное, и минус, если m – четное.

Величина Аi зависит от площади si i -той зоны и угла ai между внешней нормалью к поверхности зоны в какой-либо точке и прямой, направленной из этой точки в точку М (см. рис. 2, где, в частности, показан угол a 3).

Можно показать, что все зоны Френеля примерно равновелики по площади. Увеличение же угла ai с ростом номера зоны приводит к уменьшению амплитуды А i. Она уменьшается с ростом i также и вследствие увеличения расстояния от зоны до точки М. Таким образом, А12>…> Am. При большом числе зон можно приближенно считать, что Аi= (Ai -1 +Ai +1) / 2. (2)




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 389; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.