КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Соотношение неопределенностей Гейзенберга. Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной Dх,расположенную перпендикулярнок направлению
Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной Dх,расположенную перпендикулярнок направлению движения частицы. До прохождения частицы через щель рх имеет точное значение, равное 0, так что неопределенность импульса Dрх= 0, зато координата х частицы является совершенно неопределенной. В момент прохождения частицы через щель положение меняется. Вместо полной неопределенности координаты х появляется неопределенность Dх, но это достигается ценой утраты определенности значения рх. Действительно, вследствии дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах некоторого угла 2j, где j – угол, соответствующий первому дифракционному минимуму. Таким образом, появляется неопределенность импульса Dрх=рsinj. (8) Краю центрального дифракционного максимума (первому минимуму), получающемуся от щели шириной Dх соответствует угол j, для которого [cм. (4.8) при b=Dх и m= 1] sinj=l/ Dх. (9) Следовательно, Dрх=рl/ Dх. (10) Отсюда с учетом (1) получается соотношение DхDрх =рl=h (11) В общем случае соотношение DхDрх ³ h, DyDрy ³ h, DzDрz ³ h (12) называют соотношением неопределенностей Гейзенберга. Из него следует, что чем точнее определена координата (Dх мало, т.е. узкая щель), тем больше неопределенность в импульсе частицы Dрх ³h/Dх. Точность определения импульса будет возрастать с увеличением ширины щели Dх [cм. (9), (8)] и при Dх ®¥ не будет наблюдаться дифракционная картина, и поэтому неопределенность импульса Dрх будет такой же, как и до прохождения частицы через щель, т.е. Dрх =0. Но в этом случае не определена координата х частицы, т.е. Dх ®¥. Невозможность одновременно точно определить координату и импульс (скорость) не связана с несовершенством методов измерения или измерительных приборов. Соотношение неопределенности является квантовым ограничением применимости классической механики к микрообъектам. Выразим (11) в виде DхD v х ³h/m. (13) Из (13) следует, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости. Для пылинки массой 10-12 кг и линейными размерами 10-6 м, координата которой определена с точностью до 0.01 от ее размеров (т.е. Dх= 10-8 м) неопределенность скорости согласно (13) D v х= 6.62×10-31/(10-8×10-12)=6.62×10-14 м/c, т.е. будет ничтожно малой. Т. о. для макроскопических тел их волновые свойства не играют никакой роли, координата и скорость макротел могут быть измерены достаточно точно. В квантовой механике рассматривается также соотношение неопределенностей между энергией частицы Е и временем t нахождения частицы в данном энергетическом состоянии (или времени наблюдения за состоянием частицы). Оно аналогично (11) и имеет вид DЕDt³h. (14) Из (14) следует, что частота излучения фотона также должна иметь неопределенность Dv ³DЕ/h,(15) т.е. линии спектра должны характеризоваться частотой v ± Dv. Действительно, опыт показывает, что все спектральные линии размыты.
Дата добавления: 2014-10-23; Просмотров: 388; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |