Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример 23




Пример 22.

[ D = 16 – 52 < 0 Þ дробь III типа.]


Ответ:

Ответ:

 

 

Итак, любая рациональная дробь интегрируема. Для этого необходимо выполнить следующие действия.

1) Если дробь является неправильной, выделить ее целую часть. То есть представить в виде:

,

где Tm-n (x) и Rr (x) – многочлены степени m-n и r соответственно (причем r<n).

2) Разложить правильную рациональную дробь на сумму простых дробей

3) Вычислить интегралы от многочлена Tm-n (x) и каждой из простых дробей, полученных на шаге 2).

Пример 24.

1) Дробь - неправильная рациональная дробь. Выделим ее целую часть:

Поэтому можно записать:

 

2) Полученную правильную дробь разложим на сумму простых дробей:

Отсюда следует:

Значит, подынтегральная рациональная дробь представима в виде:

3) Найдем интеграл:

Ответ:

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 332; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.