КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример решения задачи Д -3
Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 и r3, радиусом инерции ρ3 относительно оси вращения, блока 4 радиуса R4 и подвижного блока 5 (коэффициент трения грузов о плоскость равен f).Тела системы соединены нитями, намотанными на шкив 3. К центру блока 5 прикреплена пружина с коэффициентом жесткости с; ее начальная деформация равна нулю. Система приходит в движение из состояния покоя под действием силы F=f(s), зависящей от перемещения s точки ее приложения. На шкив 3 при движении действует постоянный момент М сил сопротивления. Дано: m1=0 кг, m2=5 кг, m3=6 кг, m4=0 кг, m5=4 кг, R3=0,3 м, r3= 0,1 м, ρ3=0,2 м, f=0,1, с=240 Н/м, М=0,6 Нм, F=80(3+2S)H, s1=0,2 м. Определить: vc5 в тот момент, когда s= s1. Решение: 1.Рассмотрим движение неизменяемой механической системы, состоящей из весомых тел 2, 3, 5 и невесомых тел 1 и 4, соединенных нитями. Изобразим действующие на систему внешние силы: активные F, Fупр, Р2, Р3, Р5, Fтр2, момент сопротивления М, натяжение нити S5 и реакции связей N2 , N3, N4 .
Рис. Д.3 2. Для определения vc5 воспользуемся теоремой об изменении кинетической энергии: , где - соответственно, сумма работ внешних и внутренних сил системы. Для рассматриваемой системы, состоящей из абсолютно твердых тел, соединенных нерастяжимыми нитями, работа внутренних сил равна нулю. В начальном положении все элементы механизма находились в покое, скорости всех тел были равны нулю, поэтому Т0=0. 3. Кинетическая энергия системы равна сумме энергий всех тел системы: Т= Т2+ Т3+ Т5. 4. Выполним кинематический анализ: - тело 2 движется поступательно; - тело 3 вращается вокруг неподвижной оси; - тело 5 участвует в плоскопараллельном движении. Исходя из этого, кинетическая энергия системы может быть представлена выражением: . 5. Кинетическая энергия Т, которую получила система после того, как груз переместился вдоль наклонной плоскости на расстояние s1, зависит от искомой скорости vc5. Поэтому все скорости, входящие в выражение кинетической энергии данной механической системы, выразим через скорость vc5. 6. Поскольку грузы 1 и 2 связаны нерастяжимой нитью, то их скорости равны. В свою очередь эта нерастяжимая нить перекинута через малый обод шкива 3, следовательно: v1= v2= vА, где vА – любая точка обода радиуса r3 шкива 3. 7. Линейные скорости шкива 2 и блока 5 зависят от одной угловой скорости ω3: v2= ω3r3, v5= ω3R3. 8. Поскольку точка К5 является мгновенным центром скоростей для блока 5 (он как бы «катится» по участку нити К5L), то v5=2vc5. Тогда: 9. Осевые моменты инерции подвижного блока 5 и ступенчатого шкива 3 определяется выражениями: 10. Выполнив подстановку всех приведенных выше значений в выражение кинетической энергии для заданной механической системы, получим: . 11. Находим работу всех действующих внешних сил при перемещении, которое будет иметь система, когда груз 1 пройдет путь s1=0,2 м. Введем следующие обозначения: s2 – перемещение груза 2 (s2=s1); φ3 – угол поворота шкива 3; h5 – перемещение центра масс блока 5; λ0, λ1 –начальное и конечное удлинение пружины. Сумма работ всех внешних сил равна: , где
Работы остальных сил равны нулю: - точка К5 – мгновенный центр скоростей, поэтому работа силы натяжения нити S5 равна нулю; - реакция опоры N2 перпендикулярна перемещению груза 2, а поэтому рабо- ты не совершает; - реакции N3, N4, приложенные в неподвижных точках, не совершают работы. По условию задачи λ0=0, тогда λ1 = sc5 – перемещение конца пружины. Выразим величины sc5 и φ3 через заданное перемещение s1. Зависимость между перемещениями такая же, как между соответствующими им скоростями: 12. Поскольку v5=v3=ω3R3 и vc5=0,5v5, то vc5=0,5ω3R3. Следовательно, λ1 = sc5=0,5φ3R3=0,5(s1R3)/r3. 13. При найденных значениях φ3 и λ1 получим выражение для подсчета суммы работ всех внешних сил, действующих на механическую систему: 14. Кинетическую энергию приравниваем к работе:
= = Подставив в полученное выражение известные численные значения заданных величин, найдем искомую скорость vc5. Ответ: vc5 = 2,10 (м/c).
Таблица Д-3
Рис.Д3.0 Д.3.1.
Рис. Д3.2 Рис.Д 3.3.
Рис Д 3.4 Рис.Д.3.5.
Рис.Д 3.6. Рис. Д 3.7 Рис. Д.3.8 Рис.Д.3.9.
Дата добавления: 2014-10-31; Просмотров: 5146; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |