Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Миноры и алгебраические дополнения




 

Рассмотрим определитель n -го порядка (14.3). Выделим в нем какой-либо элемент аij и вычеркнем i- ю строку и j- й стол­бец, на пересечении которых расположен этот элемент. Полу­ченный определитель (n - 1)-го порядка называется минором Mij элемента aij определителя Δ n.

Пример 1. Найти минор М 32 определителя четвертого по­рядка

 

 

Решение. Минор М 32 элемента a 32 получается вычеркива­нием из данного определителя 3-й строки и 2-го столбца. По­лученный определитель 3-го порядка равен

 

Определение 2. Алгебраическим дополнением элемента aij определителя (14.3) называется число

 

 

Так, для приведенного выше примера алгебраическое до­полнение равно

 

 

Миноры и алгебраические дополнения играют важную роль в алгебре и ее приложениях. Одним из таких применений яв­ляется основополагающая теорема о способе вычисления опре­делителей.

ТЕОРЕМА 1. Определитель равен сумме произведений эле­ментов любой строки на их алгебраические дополнения:

 

 

Формула (14.4) называется разложением определителя по i- й строке. Доказательство этой теоремы мы опускаем. Анало­гичное утверждение имеет место и для разложения определи­теля по любому столбцу.

Формула (14.4) сводит вычисление определителя n -го по­рядка к вычислению n определителей (n - 1)-го порядка. Зная формулу (14.2) вычисления определителя 3-го порядка, мы, на­пример, можем найти определитель 4-го порядка путем разло­жения его на сумму алгебраических дополнений по формуле (14.4).

Пример 2. Вычислить определитель 4-го порядка

 

 

Решение. В принципе, разложить определитель можно по любой строке (столбцу), согласно формуле (14.4). Однако объ­ем вычислений можно существенно уменьшить, если выбрать такую строку (столбец), в которой побольше элементов равно нулю. Наиболее подходящей в нашем случае является вторая строка. Разложение по ней определителя имеет вил

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 350; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.