КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение экономических задач с использованием моделей управления запасами
Решим задачу с применением основной модели управления запасами. Пример 1. Интенсивность равномерного спроса составляет 2000 телевизоров в год. Организационные издержки для одной партии составляют 20 тыс. р. Цена единицы товара равна 1 тыс. р., а издержки содержания телевизоров составляют 0,1 тыс. р. за один телевизор в год. Найти оптимальный размер партии, число поставок и продолжительность цикла. Решение. По условию задачи g = 2000, b = 20, s = 1, h = 0,1. Общие издержки в течение года:
Ответ. Оптимальный размер партии составляет 894 телевизора, число поставок — 2,24, продолжительность цикла — 163 дня. Рассмотрим задачу с применением модели производственных поставок. Пример 2. Интенсивность равномерного спроса выпускаемых фирмой видеомагнитофонов составляет 2000 шт. в год. Организационные издержки равны 20 тыс. р. Цена видеомагнитофона составляет 1 тыс. р., издержки хранения равны 0,1 тыс. р. в расчете на один видеомагнитофон в год. Запасы на складе пополняются со скоростью 4000 видеомагнитофонов в год. Производственная линия начинает действовать, как только уровень запасов на складе становится равным нулю, и продолжает работу до тех пор, пока не будет произведено q видеомагнитофонов. Найти размер партии, который минимизирует все затраты. Определить число поставок в течение года, время, в течение которого продолжается поставка, продолжительность цикла, максимальный уровень запасов и средний уровень запасов при условии, что размер поставки оптимален. Решение. Данная модель задачи является моделью производственных поставок со следующими параметрами:
График изменения запасов представлен на рис. 33.6.
Число партий в течение года:
Продолжительность поставки:
Продолжительность цикла:
Максимальный уровень запасов:
Средний уровень запасов:
Уравнение издержек:
Решив уравнение dC/dq = 0, получим q опт = = 1265 видеомагнитофонов. Найдем оптимальные значения поставок, продолжительность поставки, продолжительность цикла:
Ответ. За каждую поставку необходимо доставлять на склад 1265 видеомагнитофонов, оптимальное число поставок составляет 1,6, продолжительность поставки — 115 дней, продолжительность цикла — 230 дней.
Дата добавления: 2014-10-15; Просмотров: 622; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |