КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основы философии науки. вначале некий светящийся пункт, который, мгновенно расширяясь, рождает огромную сферу, где слиты начала материи и формы
Там же. С. 157. вначале некий светящийся пункт, который, мгновенно расширяясь, рождает огромную сферу, где слиты начала материи и формы. На поверхности сферы материя более разрежена, но она сгущается к центру. Такая поверхность и называется небом, «первым телом», — единство первой материи и первой формы. Небесная сфера ограничена в пространстве. Самое важное в этой концепции — понятие о свете, геометрические законы распространения которого составляют конститутивные законы мироздания, которые доступны человеческому познанию. Природа познается посредством применения математики, а основу физики составляет оптика. Гроссетест видел в свете есте- j ственный источник природной активности, воздействия вещей друг на друга. Весь мир для него является результатом самовозрастающей светящейся массы. Эта тончайшая субстанция образует краски, звуки, растения и даже животных. И в человеке все — порождение единого светового начала, а свет человеческого знания — только ничтожно малая частица абсолютного божественного света.! Основные достижения Оксфордской школы связаны с научной деятельностью членов Мертонского колледжа при Оксфордском университете. Важное место среди них занимает Фома Брод-, вардин, который пытался выработать математический способ опи- I сания движений тел посредством придания физическим процессам количественных показателей. А его ученики — Ричард Кил- I лингтон, Ричард Суиссет (Суайнсхед), Уильям Хейтесбери и Джон 1 Дамблтон, так называемые «калькуляторы», стремясь объединить I квалитативную физику Аристотеля и учение о пропорциях Евкли- I да, пытались создать единую систему «математической физики», I основанной на возможности арифметико-алгебраического выра- I жения качества. К главным практическим достижениям «кальку- I ляторов» относится теорема о среднем градусе скорости, или «мер- I тоновское правило», согласно которому равномерно ускоряющее- I ся или замедляющее движение эквивалентно равномерно ускоря- I ющемуся движению со средней скоростью. В работах «калькуля- | торов» формировались такие понятия математики, как переменная величина, логарифм, дробный показатель, бесконечный ряд. К ученикам Гроссетеста относят английского натурфилософа и богослова Роджера Бэкона (ок. 1214—1242) — одного из наиболее интересных, оригинальных мыслителей своего века, которого называли «удивительным доктором» («doctor mirabilis»). Мировоз- Глава II. Возникновение науки и основные стадии ее развития 111 зрение Р. Бэкона, с одной стороны, формировалось под влиянием естественнонаучных интересов оксфордского кружка, руководимого Гроссетестом, а с другой — в неприятии умозрительных рассуждений схоластиков. Схоластике Р. Бэкон противопоставял программу практического назначения знания, с помощью которого человек может добиться своего могущества и улучшения жизни. Ему принадлежат идеи, которые предвосхищали будущее развитие науки и техники: о создании судов без гребцов, управляемых одним человеком; о колесницах, передвигающихся без коней; о летательных аппаратах, птичьеобразными крыльями которых двигал бы один человек, сидящий в его середине; о приспособлениях, которые позволили бы человеку передвигаться по дну рек и морей; о создании зеркала, концентрирующего солнечные лучи, способные сжигать все встречающееся на их пути, и др. Некоторые историки считают, что «удивительному доктору» удалось создать порох. Вслед за арабскими философами и естествоиспытателями Р. Бэкон создает энциклопедию, значительное место в которой отводит математике, представляющей из себя комплекс дисциплин, прежде всего геометрии и арифметики, затем астрономии и музыки (предполагают, что имеется в виду акустика). Мыслитель считает, что только математика достоверна и несомненна и с помощью ее необходимо проверять все остальные науки. Она же и самая легкая из наук, ибо она «доступна уму каждого», следовательно, с нее и надо начинать обучение детей. Все «науки должны познаваться не с помощью диалектических и софистических доводов, а с помощью математических доказательств, доходящих до истин и дел других наук и управляющих ими»; благодаря применению математики «наука, полная сомнений, мнений и неясных мест, может быть удостоверена и достичь очевидности и истинности»1. Но для получения истинных знаний одних только математических доказательств недостаточно. Для лучшего понимания и устранения сомнений необходим опыт. Р. Бэкон выделял два основных способа познания — «с помощью доказательств и из опыта». Также существует и два вида опыта. Один из них приобретается посредством «внешних 1 Антология мировой философии: В 2 т. Т. 1. Ч. 2. М., 1969. С. 870— 872. 112 Основы философии науки чувств» — человек может полагаться на свои органы чувств (например, зрение), на свидетельства очевидцев, а также на специально изготовленные инструменты (если мы, например, исследуем небесные явления). Однако этого внешнего опыта недостаточно, «ибо он не вполне удостоверяет нас относительно телесных вещей из-за трудностей познания и совсем не касается духовных вещей». Поэтому необходим другой вид опыта — опыт «внутренний», который становится возможным только в мистических состояниях избранных благодаря обретению внутреннего озарения, божественной «иллюминации»: Причем, добавляет Бэкон, этот второй род опыта гораздо лучше первого. Допускает Р. Бэкон и третью разновидность опыта. В. В. Соколов отмечает: «Он учил, что существовал некий совсем уже фантастический праопыт, которым всемогущий бог наделил «святых отцов и пророков». Они совсем не опирались на свои органы чувств, ибо бог открыл им науки через внутреннее озарение (как открывает он их некоторым верующим и впоследствии). Ветхозаветные патриархи и пророки оказались в соответствии с этой концепцией первыми философами и учеными, знавшими всю истину и все науки, греческие же философы, в частности Аристотель, заимствовали от них только часть этих истин. И вообще бог, недовольный людьми, сообщает им лишь частичную истину, правду смешивает с ложью. Опираясь на опыт, они могут выявить ее, но истина в ее полном объеме не может быть доступна людям»1. Р. Бэкон подчеркивал, что «голое доказательство», не сопровождаемое опытом, не может доставить полного удовлетворения. Как ни неопровержимы, например, доказательства различных теорем относительно равностороннего треугольника, окончательную убедительность они приобретают, если доказывающий строит данный треугольник и все, что связано с доказательством той или иной теоремы, собственными усилиями. Философ заключает: «Опытная наука — владычица умозрительных наук». Предполагают, что здесь впервые введен термин «опытная наука». Опыт включает в себя физику, в которую входят алхимия, астрономия, астрология, медицина, в известном смысле и математика. Согласно Р. Бэкону, опытная наука, являясь источником новых истин, 1 Соколов В. В. Средневековая философия. М., 1979. С. 331. Гла ва II- Возникновение науки и основные стадии ее развития 113 не входящих в эмпирическое содержание других наук, должна обеспечить верификацию (т. е. подтверждение или опровержение) умозрительных начал. Кроме того, она «предписывает, как делать удивительные орудия и как, создав их, ими пользоваться, а также рассуждает обо всех тайнах природы на благо государства и отдельных лиц и повелевает остальными науками, как своими служанками»1. Как омечает А. В. Ахутин, «когда средневековые ученые патетически призывают к опытному исследованию, порицают, подобно Роджеру Бэкону, ложный авторитет, дурную традицию и невежественные мнения толпы, отсюда еще никоим образом нельзя делать вывод, что здесь закладывается фундамент «экспериментальной науки» в современном смысле слова. Ни Гроссете-сту, ни Альберту Великому, ни Р. Бэкону не приходило в голову сомневаться в основах христианского мировоззрения. Речь шла только о необходимости и, может быть, даже о преимуществе опытного постижения божественных истин через наблюдение порядка творения. Никто из них не нарушал иерархии средневековых наук с теологией и метафизикой во главе. Даже Р. Бэкон отводит лишь одну часть своего «Большого сочинения» для указания преимуществ опытной науки, в которую он включает астрологию и алхимию. Может быть, еще большую роль играла концепция мистического опыта, непосредственного, чувственного постижения божественных истин внутренним созерцанием, озарением, для которого простой «натуралистический» опыт служит лишь подготовительным этапом, известного рода упражнением и очищением2. Английский философ и логик Уильям Окнам (ок. 1300—1349/ 1350) внес большой вклад в развитие логического учения. Он родился недалеко от Лондона, учился и преподавал в Оксфордском университете и, несомненно, испытал значительное воздействие эмпирической философской школы, связанной с именами Грос-сетеста и Роджера Бэкона. Среди работ Оккама наиболее значительны — «Распорядок», «Избранное», «Свод всей логики» («Summa totius logicae»). В эпоху Оккама в формировании знания преобладали вербальные псевдообобщения, которые становились тормо- 1 Антология мировой философии: В 2 т. Т. 1. Ч. 2. М., 1969. С. 873. 2 См.: Ахутин А. В. История принципов физического эксперимента. М., 114 Основы философии науки зом развития действительно научного, предметного знания. Це-: лям разрушения такого тормоза служила знаменитая «бритва Ок-кама». Чаще всего она формулируется словами: «Без необходимости не следует утверждать многое». Реже фигурирует другая формулировка: «То, что можно объяснить посредством меньшего, не следует выражать посредством большего». В последующей традиции оккамизма была выработана еще более краткая форму- \ лировка «бритвы Оккама»: «Сущностей не следует умножать без необходимости», что означает, что каждый термин обозначает | лишь определенный предмет. Для Оккама реально существуют f только единичные вещи и интенция — устремление человеческой «души на предмет познания. Оккам развивает учение о существовании двух разновидное- ' Вторую разновидность знания Оккам именует абстрагирован- I Теорию общих понятий Оккама называют терминизмом. Тер- | мин — простейший элемент всякого знания, всегда выраженного J словом. Будучи единичным, оно становится общим (в уме) в свя- I зи с тем или иным значением, которое ему придается. Поэтому I универсалии трактуются как знаки. Одни из них естественны и | могут быть непосредственно отнесены к соответствующим вещам ^ (дым — к огню, смех — к радости). Другие же искусственны, условны, когда словам придается то или иное значение, относимое не к одной, а ко многим вещам. 1 Антология мировой философии: В 2 т. Т. 1. Ч. 2. М., 1969. С. 893. Глава II. Возникновение науки и основные стадии ее развития 115 В другом контексте Оккам различает две разновидности терминов. Термины первичной интенции — это знаки, относящиеся к внешним вещам, но ничего о них не утверждающие. Знание, связанное с ними, заключает в себе психологическую природу, объясняющую образование самих терминов: «Сократ», «человек», «животное» и т. п. От них отличаются термины вторичной интенции, направленной уже не на вещи, а на термины первичной интенции. Именно здесь и возникают универсалии как термины, значение которых относится ко многим вещам. Из двух разновидностей терминов вытекают и два рода наук. Одни из них — реальные, трактующие о самом бытии. Другие — рациональные, рассматривающие понятия с точки зрения их отношения не к вещам, а к другим понятиям. Без всякого сомнения, это логика, имеющая дело с термином (знаками знаков). В ней знаки из орудий знания становятся объектом его. Эмпиристическое острие «бритвы Оккама» расчищало поле для естественнонаучных исследований. Однако форма изложения новых идей, особенности доказательства и аргументации оставались у него вполне схоластическими, нередко весьма искусственными. Идеи Оккама были широко распространены в средневековых университетах. Реализация идей опытной науки Р. Гроссетеста, Р. Бэкона, «калькуляторов» и др. оставалась вопросом будущего. В частности, проведение экспериментов предполагало создание соответствующей экспериментальной техники, устройств, приборов и т. д. Но для развития техники и инженерного искусства требовались огромные материальные ресурсы, которые реально появились лишь в эпоху Возрождения. Создание новой техники, в свою очередь, предполагало гораздо более широкое применение математических расчетов, использование прикладных математических моделей, которое стимулировало развитие математических исследований. Несмотря на значительное увеличение числа инженеров, строителей и ученых-практиков, идея о том, что законы природы могут быть описаны языком математики, исключительно медленно пробивала себе дорогу на протяжении всей эпохи Возрождения. Ее судьба напрямую зависела от эффективности применения математических расчетов в повседневной жизни и инженерном искусстве, от их вклада в технический прогресс и, наконец, от масш- 116___________________________________ Основы философии науки табов применения техники в военном деле, в мореплавании, в строительстве, в мануфактурном производстве и т. д. Характерно, что, изучая локальное движение, движение рав-^ номерное и равноускоренное, западноевропейские математики! XIV в. никогда не делали попыток применить полученные мате-j матические модели к физическим событиям, скажем, к падаю^ щим телам, не пытались подвергнуть их экспериментальным про-; веркам. Даже для Н. Коперника его собственная кинематическая; модель — это лишь вычислительные гипотезы, предполагающие! более правдоподобное объяснение движения небесных тел. В эпоху Возрождения интерес христианских теологов к эпистемологи-; ческим проблемам, связанным с характерным для таких мысли«телей ХШ—XIV вв., как Р. Гроссетест и Р. Бэкон, применением В опытной науке математических доказательств и с экспериментальной проверкой умозрительных «начал», в значительной мере был утрачен1. Но в это же самое время изменяется и роль человека в мире. Зарождается новый тип мышления, связанный с процессом секуляризации, начинающимся в Европе в XV в. и выражающимся в приобретении самостоятельности, автономности по отношению к церкви и религии социально-политической, экономической, духовной жизни — философии, науки, искусства. Происходит постепенная смена мировоззренческой ориентации: для человека значимым становится посюсторонний мир, автономным, универсальным и самодостаточным становится индивид. В протестантизме происходит разделение знания и веры, ограничение сферы применения человеческого разума миром «земных вещей», под которым понимается практически ориентированное познание природы. «Предоставив дело спасения души «одной лишь вере», протестантизм тем самым вытолкнул разум на поприще мировой практической деятельности — ремесла, хозяйства, политики. Применение разума в практической сфере тем более поощрялось, что сама эта сфера, с точки зрения реформаторов, приобретает особо важное значение: труд выступает теперь как своего рода мирская аскеза, поскольку монашескую аскезу протестантизм не принимает. Отсюда уважение к любому труду — как крестьянскому, так и ремесленному, как деятельности землекопа, так и деятель- 1 См.: Меркулов И. Л. Эпистемология (когнитивно-эволюционный подход). Т. 1. СПб., 2003. С. 370-371. Глава II. Возникновение науки и основные стадии ее развития 117 ности предпринимателя. Этим объясняется характерное для протестантов признание особой ценности технических и научных изобретений, всевозможных усовершенствований, которые способствуют облегчению труда и стимулированию материального производства»1. В этих условиях и возникает экспериментально-математическое естествознание. Среди тех, кто подготавливал рождение науки, был Николай Кузанский (1401—1464), идеи которого оказали влияние на Джордано Бруно, Леонардо да Винчи, Н. Коперника, Галилео Галилея, И. Кеплера. В своих философских воззрениях на мир Кузанский вводит методологический принцип совпадения противоположностей — единого и бесконечного, максимума и минимума, из которого следует тезис об относительности любой точки отсчета, тех предпосылок, которые лежат в фундаменте арифметики, геометрии, астрономии и других знаний. Отсюда философ делает заключение о предположительном характере всякого человеческого знания, а не только того, которое мы получаем, опираясь на опыт, как считали в античности. Поэтому он уравнивает в правах и науку, основанную на опыте, и науку, основанную на доказательствах. Большое внимание Кузанский придает измерительным процедурам, поэтому интерес представляет попытка дать «опытное» обоснование геометрии с помощью взвешивания, которое воспринимается им как универсальный прием. Механические средства измерения уравниваются в правах с математическим доказательством, что уничтожает ранее непреодолимую грань между механикой, понимаемой как искусство, и математикой как наукой. Это те предпосылки, без которых не могло бы возникнуть исчисление бесконечно малых величин и механика как математическая наука. Применяя принцип совпадения противоположностей к астрономии, Кузанский приходит к выводу, что Земля не является центром Вселенной, а такое же небесное тело, как Солнце и Луна,. что подготавливало переворот в астрономии, который в дальней-.' тем совершил Коперник. А примененный к проблеме движения принцип совпадения противоположностей дал Кузанскому возможность высказать идею о тождестве движения и покоя, что в корне противоречило античному и средневековому пониманию, 1 Гайденко П. Л. История новоевропейской философии в ее связи с наукой. М.,2000. С. 8. 118 Основы философии науки утверждавшему, что покой и движение качественно различные и принципиально несовместимые состояния. Человек становится творцом, поднимаясь почти на один уровень с Богом, ведь он наделен свободой воли и должен сам решать свою судьбу, способен творить, стать мастером, которому по силам любая задача. Отсюда и характерное для эпохи Возрождения стремление познать принципы функционирования механизмов, приборов, устройств и самого человека. В этой связи особый интерес представляют попытки Леонардо да Винчи (1452—1519) применить в анатомии, которой он занимался на протяжении всей своей жизни, знания из прикладной механики и найти соответствие между функционированием органов человека и животных и функционированием известных ему технических устройств, механизмов. Как и Р. Бэкон, Леонардо да Винчи считал, что «опыт никогда не ошибается, ошибаются только суждения ваши», и что для получения в науках достоверных выводов следует применять математику, в которую он обычно включал и механику: «...никакой достоверности нет в науках там, где нельзя приложить ни одной из математических наук, и в том, что не имеет связи с математикой»1. Следует добавить, что механика мыслилась им еще не как теоретическая наука, какой она станет во времена Галилея и Ньютона, а как чисто прикладное искусство конструирования различных машин и устройств. Леонардо да Винчи подошел к необходимости органического соединения эксперимента и его математического осмысления, которое и составляет суть того, что в дальнейшем назовут современным естествознанием, наукой в собственном смысле слова. §5. Наука в собственном смысле: главные этапы становления В соответствии с принятой нами концепцией генезиса науки и периодизации ее истории (гл. П, §1) рассмотрим основные особенности главных этапов становления науки в собственном смыс- 1 Леонардо^а Винчи. Избранные естественнонаучные произведения. М., 1955. С. 11-12. Глава II. Возникновение науки и основные стадии ее развития 119 ле. Последняя исторически первоначально возникла в форме экспериментально-математического естествознания. Социально-гуманитарные науки — в силу определенных причин — возникли и формировались несколько позднее (о них речь будет идти в гл. УШ). Здесь, однако, заметим следующее. Выбор естествознания (и прежде всего физики) для анализа основных этапов становления науки в собственном смысле обусловлен следующим обстоятельством. «В методологических исследованиях строение развитых наук принимается за своего рода эталон, с позиций которого рассматриваются все другие системы теоретического знания»1. И это вовсе не натурализм или физикализм. Дело в том, что развитое явление (предмет) более полно, глубоко и рельефнее «предъявляет» исследователю свои характеристики, чем явление (предмет) неразвитый, незрелый. «Анатомия человека — ключ к анатомии обезьяны», — говорил Маркс. История и современное состояние науки показали, что — опять-таки в силу конкретных причин — именно в естествознании общие контуры науки как таковой (науки в собственном смысле), ее структура, динамика и т. п. просматриваются наиболее четко, зримо и выпукло. Но это никоим образом не означает ни игнорирования или недооценки социально-гуманитарных наук в анализе «науки вообще», ни абсолютизации их специфики. Классическое естествознание и его методология Хронологически этот период, а значит, становление естествознания как определенной системы знания, начинается примерно в XVI—XVII вв. и завершается на рубеже XIX—XX вв. В свою очередь данный период можно разделить на два этапа: этап механистического естествознания (до ЗО-х гг. XIX в.) и этап зарождения и формирования эволюционных идей (до конца XIX — начала XX в.). I. Этап механистического естествознания. Начало этого этапа совпадает со временем перехода от феодализма к капитализму в ■ Западной Европе. Начавшееся бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) потребовало решения целого ряда технических задач. А это в свою ' Степин B.C. Теоретическое знание. М., 2000. С. 98. 120___________________________________ Основы философии науки очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую значимость приобрела механика — в силу необходимости решения названных задач. Активное деятельностное отношение к миру требовало познания его существенных связей причин и закономерностей, а значит, резкого усиления внимания к проблемам самого познания и его форм, методов, возможностей, механизмов и т. п. Одной из ключевых проблем стала проблема метода. Укрепляется идея о возможности изменения, переделывания природы, на основе познания ее закономерностей, все более осознается практическая ценность научного знания («знание — сила»). Механистическое естествознание начинает развиваться ускоренными темпами. В свою очередь этап механистического естествознания можно условно подразделить на две ступени — доньютоновскую и ньютоновскую, — связанные соответственно с двумя глобальными научными революциями, происходившими в XVI—XVII вв. и создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира. Доньютоновская ступень — и соответственно первая научная революция происходила в период Возрождения, и ее содержание определило гелиоцентрическое учение Я. Коперника (1473—1543). Это был конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов, — это и было первой научной революцией, подрывавшей также и религиозную картину мира. Кроме того, он высказал мысль о движении как естественном свойстве материальных объектов, подчиняющихся определенным законам, и указал на ограниченность чувственного познания («Солнце ходит вокруг Земли»). Но Коперник был убежден в конечности мироздания: Вселенная где-то заканчивается твердой сферой, на которой закреплены неподвижные звезды. Нелепость такого взгляда показал датский астроном Тихо Браге, а особенно Д. Бруно. Он отрицал наличие центра Вселенной, отстаивал тезис о ее бесконечности и о бесчисленном количестве миров, подобных Солнечной системе. Вторую глобальную научную революцию XVII в. чаще всего связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленьютоновскую ступень развития механистического естествознания. В учении Г. Галилея (1564—1642) уже были заложены достаточно прочные ос- Глава II- Возникновение науки и основные стадии ее развития 121 новы нового механистического естествознания. В центре его научных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки. Исходным пунктом познания, по Галилею, является чувственный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным и реальным или мысленным экспериментированием, опирающимся на строгое количественно-математическое описание. Критикуя непосредственный опыт, Галилей первым показал, что опытные данные в своей пер-возданности вовсе не являются исходным элементом познания, что они всегда нуждаются в определенных теоретических предпосылках. Иначе говоря,опыт не может не предваряться определенными теоретическими допущениями, не может не быть «теоретически нагруженным». Вот почему Галилей, в отличие от «чистого эмпиризма» Ф. Бэкона (при всем сходстве их взглядов), был убежден, что «факту-альные данные» никогда не могут быть даны в их «девственной первозданности». Они всегда так или иначе «пропускаются» через определенное теоретическое «видение» реальности, в свете которого они (факты) получают соответствующую интерпретацию. Таким образом, опыт — это очищенный в мысленных допущениях и идеализациях опыт, а не просто (и не только) простое описание фактов. Галилей выделял два основных метода экспериментального исследования природы: 1. Аналитический («метод резолюций») — прогнозирование чув •{Элементы реальности (явления, которые «трудно себе предоставить»), недоступные непосредственному восприятию (на-|йример, мгновенная скорость). Иначе говоря, вычленяются ||федельные феномены познания, логически возможные, но йе представимые в реальной действительности. 2. Синтетически-дедуктивный («метод композиций») — на базе 122___________________________________ Основы философии наукД Достоверное знание в итоге реализуется в объясняющей теоИ ретической схеме как единство синтетического и аналитическогоИ чувственного и рационального. Следовательно, отличительное свойство метода Галилея — построение научной эмпирии, котоЩ рая резко отлична от обыденного опыта. Оценивая методологические идеи Галилея, В. Гейзенберг от мечал, что «Галилей отвернулся от традиционной, опиравшей^ на Аристотеля науки своего времени и подхватил философские идеи Платона... Новый метод стремился не к описанию непосред ственно наблюдаемых фактов, а скорее, к проектированию экспериментов, к искусственному созданию феноменов, при обычны? условиях не наблюдаемых, и к их расчету на базе математической теории»1. Гейзенберг выделяет две характерные черты нового ме тода Галилея: а) стремление ставить каждый раз новые точньк эксперименты, создающие идеализированные феномены; б) со поставление последних с математическими структурами, принимаемыми в качестве законов природы. Способ мышления Галилея исходил из того, что одни чувства без помощи разума не способны дать нам истинного понимания природы, для достижения которого нужно чувство, сопровождаемое рассуждением. Имея в виду прежде всего галилеев-ский принцип инерции, А. Эйнштейн и Л. Инфельд писали: «Открытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в истории человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, т. е. они иногда ведут по ложному следу»2. Иоган Кеплер (1571—1630) установил три закона движения планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточнил расстояние между Землей и Солнцем и др. Но Кеплер не объяснил причины движения планет, ибо динамика — учение о силах и их взаимодействии — была создана позже Ньютоном. Вторая научная революция завершилась творчеством Ньютона (1643—1727), научное наследие которого чрезвычайно глубоко и разнообразно, уже хотя бы потому, что, как сказал он сам, «я 1 Гепзепберг В. Шаги за горизонт. М., 1987. С. 232. 2 Эйнштейн А., Инфельд Л. Эволюция физики. М., 1964. С. 10. Глава II. Возникновение науки и основные стадии ее развития 123 стоял на плечах гигантов». Главный труд Ньютона — «Математические начала натуральной философии» (1687) — это, по выражению Дж. Бернала, «библия новой науки», «источник дальнейшего расширения изложенных в ней методов». В этой и других своих работах Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирного тяготения, теоретически обосновал законы Кеплера (создав тем самым небесную механику), и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли,!уны и планет, морские приливы и др.). Кроме того, Ньютон — независимо от Лейбница — создал диф-: еренциальное и интегральное исчисление как адекватный язык атематического описания физической реальности. Он был авто-эм многих новых физических представлений — о сочетании кор-ускулярных и волновых представлений о природе света, об иерархически атомизированной структуре материи, о механической причинности и др. Построенный Ньютоном фундамент, по свидетельству Эйнштейна, оказался исключительно плодотворным и до конца XIX в. считался незыблемым. Научный метод Ньютона имел целью четкое противопоставление достоверного естественнонаучного знания вымыслам и умозрительным схемам натурфилософии. Знаменитое его высказывание «гипотез не измышляю» было лозунгом этого противопоставления. Содержание научного метода Ньютона (метода принципов) сводится к следующим основным «ходам мыслей»: 1) провести опыты, наблюдения, эксперименты; 2) посредством индукции вычленить в чистом виде отдельные 3) понять управляющие этими процессами фундаментальные за 4)осуществить математическое выражение этих принципов, т. е. 5) построить целостную теоретическую систему путем дедуктив 124 Основы философии наукиш 6) «использовать силы природы и подчинить их нашим иелямйН С помощью этого метода были сделаны многие важные <^Ш Сам Ньютон с помощью своего метода решил три кардин^^Н ные задачи. Во-первых, четко отделил науку от умозрител1^^И натурфилософии и дал критику последней. («Физика, бере^^В метафизики!») Под натурфилософией Ньютон понимал «точ|^^И науку о природе», теоретико-математическое учение о неи-|^В| вторых, разработал классическую механику как целостную сяЩКГ му знаний о механическом движении тел. Его механика стада классическим образцом научной теории дедуктивного типа и эталоном научной теории вообще, сохранив свое значение до настоящего времени. В-третьих, Ньютон завершил построение новой революционной для того времени картины природы, сформулировав основные идеи, понятия, принципы, составившие механическую картину мира. При этом он считал, что «было бы желательно вывести из начал механики и остальные явления природы». Основное содержание механической картины мира, созданной Ньютоном, сводится к следующим моментам. 1. Весь мир, вся Вселенная (от атомов до человека), понимался 2. Согласно этому принципу любые события жестко предопре 3. В механической картине мира последний был представлен со Гла ва И. Возникновение науки и основные стадии ее развития 125 однородных, неизменных и неделимых корпускул — атомов. Главными понятиями при описании механических процессов были понятия «тело» и «корпускула». 4. Движение атомов и тел представлялось как их перемещение в 5. Природа понималась как простая машина, части которой под 6. Важная особенность функционирования механической карти Несмотря на ограниченность уровнем естествознания XVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание естественных причин и законов природных явлений. Материалистическая направленность механической картины Ньютона не избавила ее от определенных недостатков и ограни-ченностей. Механистичность, метафизичность мышления Ньютона проявляется, в частности, в его утверждении о том, что материя — инертная субстанция, обреченная на извечное повторение хода вещей, из нее исключена эволюция; вещи неподвижны, лишены развития и взаимосвязи; время — чистая длительность, а пространство — пустое «вместилище» вещества, существующее независимо от материи, времени и в отрыве от них. Ощущая недостаточность своей картины мира, Ньютон вынужден был апеллировать к идеям творения, отдавать дань религиозно-идеалистическим представлениям. Несмотря на свою ограниченность, механическая картина мира оказала мощное влияние на развитие всех других наук на долгое время. Экспансия механической картины мира на новые области исследования осуществлялась в первую очередь в самой физике, 126___________________________________ Основы философии наукИ но потом — в других областях знаний. Освоение новых областеШ потребовало развития математического формализма ньютоновскоИ теории и углубленной разработки ее концептуального аппарата. И Развитие многих областей научного познания в этот периоЯ Механическая картина мира оказывала сильное влияние и нН развитие биологии. Так, Ламарк, пытаясь найти естественные прв! чины развития организмов, опирался на вариант механическое картины мира, включавший идею «невесомых». Он полагал, чтИ именно последние являются источником органических движениИ и изменения в живых существах. Развитие жизни, по его мнеН нию, выступает как «нарастающее движение флюидов», котороИ и было причиной усложнения организмов и их изменения. ДоЯ вольно сильным влияние механической картины мира было и наш знание о человеке и обществе (см. об этом тп. VIII). Однако по мере экспансии механической картины мира на новые предметные области наука все чаще сталкивалась с необходимостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые все труднее было согласовывать с принципами механической картины мира. Она теряла свой универсальный характер, расщепляясь на ряд частнонаучных картин, начался процесс расшатывания механической картины мира. В середине XIX в. она окончательно утратила статус общенаучной. Говоря о механической картине мира, необходимо отличать Глава II. Возникновение науки и основные стадии ее развития 127 Успехи механической теории в объяснении явлений природы, а также их большое значение для развития практики — для техники, для конструирования машин, для строительства, мореплавания, военного дела и т. п. и привели к абсолютизации механической картины мира, которая стала рассматриваться в качестве универсальной. Таким образом, естествознание рассматриваемого этапа было механистическим, поскольку ко всем процессам природы прилагался исключительно масштаб механики. Стремление расчленить природу на отдельные «участки» и подвергать их анализу каждый по отдельности постепенно превращалось в привычку представлять природу состоящей из неизменных вещей, лишенных развития и взаимной связи. Так сложился метафизический способ мышления, одним из выражений которого и был механицизм как своеобразная методологическая доктрина. Механицизм есть крайняя форма редукционизма. Редукционизм (лат. reductio — отодвигание назад, возвращение к прежнет му состоянию) — методологический принцип, согласно которому высшие формы могут быть полностью объяснены на основе закономерностей, свойственных низшим формам, т.е. сведены к последним (например, биологические явления — с помощью физических и динамических законов). Само по себе сведение сложного к более простому в ряде случаев оказывается плодотворным — например, применение методов физики и химии в биологии. Однако абсолютизация принципа редукции, игнорирование специфики уровней (т. е. того нового, что вносит переход на более высокий уровень организации) неизбежно ведут к заблуждениям в познании. Таким образом, небывалые успехи механики породили представление о принципиальной сводимости всех процессов в мире к механическим. «Поэтому в XIX в. механика прямо отождествлялась с точным естествознанием. Ее задачи и сфера ее применяемости казались безграничными. Еще Больцман утверждал, что мы можем понять физический процесс лишь в том случае, если объясним его механически. Первую брешь в мире подобных представлений пробила мак-свелловская теория электромагнитных явлений, дававшая математическое описание процессов, не сводя их к механике»1. 1 Гейзенберг В. Шаги за горизонт. М., 1987. С. 179. 128___________________________________ Основы философии науки II. Этап зарождения и формирования эволюционных идей — с начала ЗО-х гг. XIX в. до конца XIX — начала XX в. Уже с конца XVIII в. в естественных науках (в том числе и в физике, которая выдвинулась на первый план) накапливались факты, эмпирический материал, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел главным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии. Первая линия «подрыва» была связана с активизацией исследований в области электрического и магнитного полей. Особенно большой вклад в эти исследования внесли английские ученые М. Фарадей (1791—1867) и Д. Максвелл (1831—1879). Благодаря их усилиям стали формироваться не только корпускулярные, но и континуальные («сплошная среда») представления. Фарадей обнаружил взаимосвязь между электричеством и магнетизмом, ввел понятия электрического и магнитного полей, выдвинул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил теорию электромагнитного поля, предсказал существование электромагнитных Волн, выдвинул идею об электромагнитной природе света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле. Как писал А. Эйнштейн, «первый удар по учению Ньютона о движении как программе для всей теоретической физики нанесла максвелловская теория электричества...; наряду с материальной точкой и ее движением появилась нового рода физическая реальность, а именно «поле»1. Успехи электродинамики привели к созданию электромагнит 1 ЭйнштейьГА. Физика и реальность. М., 1965. С. 17. Г лава II. Возникновение науки и основные стадии ее развития 129 Таким образом, работы в области электромагнетизма сильно подорвали механическую картину мира и по существу положили начало ее крушению. С тех пор механистические представления о мире были существенно поколеблены и — будучи не в силах объяснить новые явления — механическая картина мира начала сходить с исторической сцены, уступая место новому пониманию физической реальности. Что касается второго направления «подрыва» механической картины мира, то его начало связано с именами английского геолога Ч. Лайеля (1797—1875) и французскими биологами Ж Б. Ла-марком (1744—1829) иЖ Кювье (1769-1832). Ч. Лайель в своем главном труде «Основы геологии» в трех томах (1830—1833) разработал учение о медленном и непрерывном изменении земной поверхности под влиянием постоянных геологических факторов. Он перенес нормативные принципы биологии в геологию, построив здесь теоретическую концепцию, которая впоследствии оказала влияние на биологию. Иначе говоря, принципы высшей формы он перенес (редуцировал) на познание низших форм. Ч. Лайель — один из основоположников актуали-стического метода в естествознании, суть которого в том, что на основе знания о настоящем делаются выводы о прошлом (т. е. настоящее — ключ к прошлому). Однако Земля для Лайеля не развивается в определенном направлении, она просто изменяется случайным, бессвязным образом. Причем изменение — это у него лишь постепенные количественные изменения, без скачка, без перерывов постепенности, без качественных изменений. А это метафизический, «плоскоэволюционный» подход. Ж. Б. Ламарк создал первую целостную концепцию эволюции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в результате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию. Провозгласив принцип эволюции всеобщим законом развития живой природы, Ламарк, однако, не вскрыл истинных причин эволюционного развития. В отличие от Ламарка Ж. Кювье не признавал изменяемости видов, объясняя смену ископаемых фаун так называемой «теорией катастроф», которая исключала идею эволюции органического мира. Кювье утверждал, что каждый период в истории Земли завершается мировой катастрофой — поднятием и опусканием ма- 5. Основы философии науки 130___________________________________ Основы философии науки териков, наводнениями, разрывами слоев и др. В результате этих катастроф гибли животные и растения, и в новых условиях появились новые их виды, не похожие на предыдущие. Причину катастроф он не указывал, не объяснял. Итак, уже в первые десятилетия XIX в. было фактически под Теория клетки была создана немецкими учеными М. Шлей- \ Открытие в 40-х гг. XIX в. закона сохранения и превращения | Теория Ч. Дарвина окончательно была оформлена в его глав|| ном труде «Происхождение видов путем естественного отбора*! (1859). Эта теория показала, что растительные и животные орга-Я низмы (включая человека) — не богом созданы, а являются ре-Я зультатом длительного естественного развития (эволюции) орга-1 нического мира, ведут свое начало от немногих простейших су-1 ществ, которые в свою очередь произошли от неживой природы. | Тем самым были найдены материальные факторы и причины эво-1 люции — наследственность и изменчивость — и движущие факторы эволюции — естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых человеком домашних животных и культурных растений. Впоследствии теорию Дарвина подтвердила генетика, показав механизм изменений, на основе которых и способна рабо- Глава I I. Возникновение науки и основные стадии ее развития 131 тать теория естественного отбора. В середине XX в., особенно в связи с открытием в 1953 г. Ф. Криком и Дж. Уотсоном структуры ДНК, сформировалась так называемая систематическая теория эволюции, объединившая классический дарвинизм и достижения генетики.
Дата добавления: 2014-10-15; Просмотров: 526; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |