КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Промышленные яды 1 страница
Антропогенное воздействие на экосистемы и человека во многих отношениях стало определяющим. В Республике Казахстан ряд регионов уже объявлены зонами экологического бедствия. В настоящее время из шести миллионов открытых наукой химических веществ достаточно широко используется около 60 000 химических соединений, к которым ежегодно прибавляется около 1000 новых веществ. Промышленные яды в виде сырья, промежуточных или готовых продуктов встречаются в условиях производства и при поступлении в организм вызывают нарушение его жизнедеятельности. Технологические процессы, основанные на использовании химических веществ, находят применение практически во всех основных отраслях промышленности (металлургии и машиностроении, нефте- и газодобыче, нефтехимии, авиа- и судостроении, радиоэлектронике, агропроизводстве и др.). К промышленным ядам можно отнести две большие группы: неорганические вещества (галоиды, соединения серы, соединения азота, фосфор и его соединения, мышьяк и его соединения, соединения углерода, цианистые соединения, тяжелые металлы) и органические вещества (углеводороды ароматического ряда, хлорпроизводные и нитроаминопроизводные, углеводороды жирного ряда, хлорированные углеводороды жирного ряда, спирты жирного ряда, простые эфиры, альдегиды, кетоны, сложные эфиры кислот, гетероциклические соединения, терпены). Характеристика промышленных ядов. В системе комплексных профилактических мер, направленных на предупреждение вредного воздействия химических веществ на работающих, важная роль принадлежит промышленной токсикологии, изучающей действие на организм промышленных ядов, с целью создания безвредных и безопасных условий труда. Основными задачами промышленной токсикологии, сформулированными в конце двадцатых годов прошедшего века Н.С.Правдиным, являются: 1) гигиеническое нормирование содержания вредных веществ в объектах производственной среды (путем установления предельно-допустимых концентраций (ПДК) в воздухе рабочей зоны); 2) гигиеническая экспертиза токсических веществ (включает токсикологическую оценку промышленных ядов путем определения смертельных доз и концентраций при различных путях введения, определение кумулятивных свойств и порогов вредного действия, оценки кожно-раздражающего, кожно-резорбтивного и сенсибилизирующего действия, изучение отдаленных эффектов); 3) гигиеническая стандартизация сырья и продуктов (предусматривающей ограничение содержания токсических соединений в промышленном сырье и готовых продуктах, с учетом их вредности и опасности). Классификация промышленных ядов. В профилактической токсикологии существует несколько классификаций промышленных ядов, основанных на химических свойствах и характере действия, степени токсичности и опасности (Рисунок № 20).
Для разработки профилактических и лечебных мероприятий промышленные яды классифицируются, согласно их токсико-биологическим свойствам, на удушающие, раздражающие, наркотические вещества и вещества, действующие на кроветворную систему, паренхиматозные и нервные яды. Существует также классификация промышленных ядов по их взаимодействию с ферментными системами, а по специфическому токсическому действию различают аллергены, тератогены, мутагены, канцерогены. Химические вещества, обладающие в экспериментальных условиях канцерогенным и коканцерогенным действием, классифицируются на три класса: с высокой, средней и низкой канцерогенной активностью. Химические вещества по степени канцерогенной активности для человека, согласно Международного агентства по изучению рака (МАИР, 1982 г.), делятся на вещества с доказанной канцерогенностью для человека и вещества с вероятной канцерогенностью для человека. Существует также классификация канцерогенных соединений по химической структуре. Влияние промышленных ядов на организм. Физико-химические свойства промышленных ядов во много определяют их поступление, распределение и характер выведения из организма. При этом особенности распределения химических веществ зависят от ряда закономерностей. Промышленные органические яды, являясь неэлектролитами, очень хорошо разносятся кровью в различные органы и ткани, а многие неорганические яды, и в частности, металлы депонируются в них. Промышленные яды, поступившие в организм, подвергаются различным химическим превращениям, в результате которых в большинстве случаев образуются менее токсичные продукты, легко выводимые из организма. В то же время, некоторые вредные вещества плохо поддаются биотрансформации и метаболизму, вследствие чего количество их в тканях не меняется, а в ряде случаев, при хроническом поступлении – возрастает. Основными биохимическими реакциями метаболизма являются окисление, восстановление, гидролитическое расщепление, образование парных соединений с теми или иными биосубстратами, а также дезаминирование, метилирование и ацетилирование (Рисунок № 21). Токсическое действие промышленных ядов чрезвычайно многообразно, однако установлен ряд общих закономерностей в отношении путей поступления их в организм, всасывания, распределения и превращения в организме, выделения из него, характера действия промышленных ядов в связи с их химической структурой и физическими свойствами.
В производственных условиях поступление вредных веществ в организм через желудочно-кишечный тракт наблюдается сравнительно редко. В полость рта яды чаще всего попадают с загрязненных рук. Возможно также заглатывание ядовитых веществ из воздуха при задержке их на слизистых оболочках носоглотки и полости рта. В желудочно-кишечном тракте всасывание ядов происходит главным образом в тонких кишках и лишь в незначительной степени – в желудке. Кислая среда желудочного сока, растворимость вредных веществ в липидах, характер потребляемой пищи оказывают существенное влияние на всасывание ядовитых веществ и их поступление в печень. Количество химических веществ, которое может проникнуть через кожу, находится в прямой зависимости от их растворимости в воде, величины поверхности соприкосновения с кожей и скорости кровотока в ней. Через кожный эпидермис, потовые и сальные железы, волосяные мешочки могут проникать вредные вещества, которые хорошо растворяются в жирах и липидах. Речь идет, прежде всего, о неэлектролитах (углеводороды ароматического и жирного ряда, их производные, металлоорганические соединения); электролиты же, диссоциирующие на ионы, через кожу не проникают. Патологические процессы, развивающиеся при воздействии промышленных ядов, бывают крайне вариабельными и отличаются глубиной их нарушения, которые, в свою очередь, обусловлены не только концентрацией (дозой) поступившего вредного вещества, временем действия и периодом выведения из организма, но и индивидуальной, возрастной и половой чувствительностью. Многие яды, помимо общетоксического действия, обладают выраженным специфическим влиянием на те или иные ферментативные системы организма, блокируют синтез нуклеиновых кислот и белка, повреждают структурную целостность мембранных образований клетки и внутриклеточных структур, форменные элементы крови. Изложенные закономерности обменных нарушений сопровождаются функциональными и органическими поражениями различных органов и систем. Для действия некоторых промышленных ядов характерно избирательное поражение центральной и периферической нервной системы, проявляющееся нейроинтоксикациями и нейротоксикозами. Преимущественное поражение органов дыхания, возникающее при остром ингаляционном воздействии, приводит к развитию ряда клинических синдромов (острый токсический ларингофаринготрахеит, острый токсический бронхит и бронхиолит, острый токсический отек легких, острая токсическая пневмония). При воздействии гепатотропных ядов клиническая картина интоксикации характеризуется развитием холестаза и токсического гепатита. Поражение мочевыделительной системы сопровождается вовлечением в патологический процесс почек и развитием токсической нефропатии. Длительный контакт с некоторыми промышленными ядами и, в частности, ароматическими аминосоединениями может привести к развитию доброкачественных и злокачественных опухолей мочевыводящих путей. Токсикометрия химических веществ. В целях предупреждения отрицательных последствий влияния промышленных ядов на состояние здоровья рабочих и населения в целом, сложилась система предупредительных мероприятий, среди которых одним из главных является токсикологическая оценка химических веществ. Представляя собой совокупность методов и приемов количественной оценки токсичности и опасности ядов, токсикометрия, как методологическая основа промышленной токсикологии и эко-токсикологии, занимает особое место в оценке степени токсичности и опасности химических веществ и их композиций. Токсикометрия химических веществ включает большой диапазон исследований и оценок, но среди них обязательными являются такие этапы, как установление смертельных эффектов, выявление и количественная характеристика кумулятивных свойств, изучение кожно-раздражающего, кожно-резорбтивного, сенсибилизирующего действия, хронического воздействия на организм с целью установления порогов вредного действия. Особое значение приобретают токсико-кинетические и метаболические критерии оценки, исследование таких отдаленных эффектов, как бластомогенез и мутагенез, влияние на репродуктивную систему. В таблице № 19 приведены критерии класса опасности химических веществ на основе ведущих токсикометрических показателей. Таблица № 19. Критерии класса опасности химического вещества.
Токсикометрия – раздел токсикологии, посвященный определению токсичности и опасности химических соединений. Токсикометрия является системой принципов и методов количественной оценки токсичности и опасности ядов. Токсикометрическая информация в обязательном порядке должна включать не только верхние показатели токсичности (смертельные концентрации и дозы), но и самые низкие, при которых возникают начальные сдвиги в обменных процессах в организме. Наиболее значимыми показателями в характеристике токсичности ядов по смертельному эффекту являются средняя смертельная концентрация в воздухе (СL50), средняя смертельная доза (DL50) при введении в желудок или другими путями. CL50 – концентрация, вызывающая гибель 50% подопытных животных при ингаляционном воздействии веществ при определенной экспозиции и определенном сроке последующего наблюдения. DL50 – доза, вызывающая гибель 50% подопытных животных при введении в желудок, в брюшную полость, при нанесении на кожу и т.д. при определенных условиях и определенном сроке последующего наблюдения.
Основой для установления безопасных уровней содержания химических веществ в различных объектах окружающей среды является концепция пороговости вредного действия ядов, определяющая, что для каждого химического вещества, вызывающего те или иные неблагоприятные эффекты в организме, существуют дозы (концентрации), при которых изменение функций организма будут минимальными (пороговыми). Пороговость всех типов действия – ведущий принцип гигиены и профилактической токсикологии. Limch – порог хронического действия – минимальная концентрация, вызывающая вредное действие в хроническом эксперименте по 4 часа пять раз в неделю на протяжении менее 4 месяцев. Limch sp – порог отдаленных эффектов – минимальная концентрация (доза) вещества, вызывающая изменения биологических функций отдельных органов и систем организма, которые выходят за пределы приспособительных физиологических реакций в условиях хронического воздействия. Определение средних смертельных концентраций и доз, порогов вредного действия необходимо для оценки опасности вредных веществ, установления возможности острых и хронических отравлений, а также установления безопасных концентраций расчетными методами. Вероятность возникновения вредных для здоровья эффектов, в реальных условиях производства, или применения химических веществ, представляет собой такую характеристику вещества, как опасность вещества. В настоящее время выделено две группы количественных показателей опасности: критерий потенциальной опасности (потенциальная возможность поступления вредных веществ в организм) и критерий реальной опасности (компенсаторные свойства организма по отношению к яду). Одним из путей повышения надежности разрабатываемых гигиенических регламентов химических веществ в производственной и окружающей среде являются учет и использование адаптационных реакций организма. Однако, в практике гигиенического регламентирования, пороговые и предельно допустимые концентрации вредных веществ устанавливаются без учета состояния адаптационных процессов организма. В указанном аспекте представляется важным разграничение истинных физиологических приспособительных реакций (адаптация) от скрытой, временно компенсированной патологии в условиях научного обоснования порогов вредного действия химических веществ на организм. Адаптация – истинное приспособление организма к изменяющимся условиям окружающей среды, которое происходит без обратимых нарушений данной биологической системы и без превышения нормальных (гомеостатических) способностей ее реагирования. Компенсация – приспособление организма к изменяющимся условиям окружающей среды, обусловленное возникновением напряженности в системах гомеостаза, которые превышают пределы обычных (естественных) возможностей. Компенсация является временно скрытой патологией и со временем может обнаруживаться в виде явных патологических изменений (декомпенсации). При длительном воздействии промышленных ядов и снижении защитных иммунологических реакций, достаточно быстро наступает срыв адаптации, и фаза физиологической адаптации переходит в фазу компенсированной патологии. При этом промышленные яды в высоких дозах могут приводить к значительным морфо-функциональным повреждениям внутренних органов и систем организма. КВИО – коэффициент возможности ингаляционного отравления – отношение максимально достижимой концентрации вещества в воздухе при 200С к средней смертельной концентрации вещества для мышей. С целью характеристики компенсаторных возможностей организма, его способности к обезвреживанию, выведению вещества и восстановлению поврежденных функций при однократном воздействии используется вычисление зоны острого (однократного) действия (Zac), а при хроническом действии вещества вычисляется зона хронического действия (Zch). Опасность хронической интоксикации прямо пропорциональна величине зоны хронического действия, то есть, чем зона хронического действия шире, тем больше опасность хронического отравления, и наоборот (Таблица № 20).
Таблица № 20. Общая схема параметров токсикометрии.
* В настоящее время учитывается порог отдаленных эффектов (ускоренное старение, канцерогенез, мутагенез, гонадотропное и эмбриотропное действие и др.).
Zac – зона острого действия – отношение средней смертельной концентрации вещества к порогу однократного действия. Zch – зона хронического действия – отношение порога однократного действия к порогу хронического действия. Zbiol – зона биологического действия – отношение средней смертельной концентрации к порогу хронического действия. Zsp – зона специфического действия – отношение порога острого действия, установленного по интегральным показателям, к порогу острого действия по специфическим показателям. Опасность токсических веществ для человека в значительной мере предопределяется их способностью к кумуляции, поэтому изучение кумуляции является непременным условием токсикологической характеристики того или иного химического вещества и необходимо при их гигиеническом регламентировании. Процессы кумуляции зачастую обусловливают развитие хронических отравлений. При накоплении самого яда в организме говорят о материальной кумуляции, а при накоплении изменений в организме (биохимических, гистохимических, функциональных и пр.), возникших при повторном воздействии химического вещества – о функциональной кумуляции. Количественная оценка функционального кумуляционного эффектавредного вещества называется коэффициентом кумуляции (Ccum) и определяется как отношение суммарной дозы, полученной организмом при неоднократном экспериментальном введении вещества в количестве, равном среднесмертельной дозе (концентрации), то есть DL50, к той же величине, но при однократном введении. Ccum= (∑DL50)/ DL50 Обратное отношение этих двух величин (S) называется степенью кумуляции и обычно выражается в процентах. По кумулятивному воздействию все токсичные вещества также делят на четыре группы: · сверхкумулятивные (Ccum <1, S> 100); · с выраженной кумулятивностью (Ccum= 1∑3, S = 100 ∑ 34); · среднекумулятивные (Ccum= 3∑5, S = 33 ∑20); · слабокумулятивные (Ccum> 5, S < 20). При установлении ПДК вредных веществ в воздухе рабочей зоны руководствуются следующими принципами: 1) принцип приоритета медицинских показаний перед технической достижимостью сегодняшнего дня и другими технико-экономическими критериями; 2) принцип обеспечения опережения разработки нормативов внедрению в производство новых химических соединений. Гигиеническое нормирование основывается на признании принципа пороговости всех типов действия химических соединений (в том числе мутагенного и канцерогенного) на целостный организм и должно учитывать необходимость комплексного подхода к установлению порогов вредного действия. Гигиеническое нормирование новых химических веществ производится в три этапа: 1. обоснование ориентированных безопасных уровней воздействия (ОБУВ); 2. обоснование ПДК; 3. корректировка ПДК путем сравнения условий труда работающих. Первый этап приурочивается к периоду лабораторной разработки новых соединений; второй этап – к периоду полузаводских испытаний и проектированию производств; третий этап – выполняется после внедрения веществ в производство в сроки, устанавливаемые в зависимости от токсикологической характеристики вещества и гигиенической характеристики производства, но не позднее 3-5 лет с момента внедрения. ПДК (предельно допустимые концентрации вредных веществ в воздухе рабочей зоны) – концентрации, которые при ежедневной (кроме выходных дней) работе в течение 8 ч. или при другой продолжительности, но не более 41 ч. в неделю, в течение всего рабочего стажа не могут вызывать заболевания или отклонения в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. ПДК в воздухе рабочей зоны устанавливаются для химических соединений, обладающих вредным действием, которые могут находится в воздушной среде в виде газов, паров, аэрозолей, а также смеси паров и аэрозоля. Определяется максимально разовая и для высоко кумулятивных веществ – среднесменная концентрация. Степень кумулятивности определяется для каждого вещества путем определения коэффициента кумуляции, зоны биологического и хронического действия, а при корректировке ПДК – по результатам повторных клинико-гигиенических наблюдений. Максимально-разовые концентрации преимущественно используются для гигиенической оценки технологического процесса и оборудования. Среднесменная ПДК – средняя концентрация, полученная при непрерывном или прерывистом отборе проб воздуха при суммарном времени не менее 75% продолжительности рабочей смены, или средневзвешенная за время всей смены концентрация в зоне дыхания работающих на местах постоянного или временного пребывания.
Дата добавления: 2014-10-31; Просмотров: 804; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |