Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Промышленные яды 1 страница




 

Антропогенное воздействие на экосистемы и человека во многих отношениях стало определяющим. В Республике Казахстан ряд регионов уже объявлены зонами экологического бедствия. В настоящее время из шести миллионов открытых наукой химических веществ достаточно широко используется около 60 000 химических соединений, к которым ежегодно прибавляется около 1000 новых веществ. Промышленные яды в виде сырья, промежуточных или готовых продуктов встречаются в условиях производства и при поступлении в организм вызывают нарушение его жизнедеятельности. Технологические процессы, основанные на использовании химических веществ, находят применение практически во всех основных отраслях промышленности (металлургии и машиностроении, нефте- и газодобыче, нефтехимии, авиа- и судостроении, радиоэлектронике, агропроизводстве и др.).

К промышленным ядам можно отнести две большие группы: неорганические вещества (галоиды, соединения серы, соединения азота, фосфор и его соединения, мышьяк и его соединения, соединения углерода, цианистые соединения, тяжелые металлы) и органические вещества (углеводороды ароматического ряда, хлорпроизводные и нитроаминопроизводные, углеводороды жирного ряда, хлорированные углеводороды жирного ряда, спирты жирного ряда, простые эфиры, альдегиды, кетоны, сложные эфиры кислот, гетероциклические соединения, терпены).

 
Широкое использование в различных отраслях промышленности и сельского хозяйства полимерных, синтетических и природных соединений и сложных продуктов, обладающих свойствами аллергенов, а также расширение производств микробиологической промышленности по изготовлению различных биологически активных препаратов и продуктов привело к значительному увеличению контингента рабочих, имеющих профессиональный контакт с аллергенами. Одной из актуальнейших санитарно-гигиенических проблем является загрязнение производственной и жилой среды обитания биологически активными полихлорированными ароматическими соединениями (диоксины), которые обладают высокой устойчивостью в окружающей среде и токсичностью.

Характеристика промышленных ядов. В системе комплексных профилактических мер, направленных на предупреждение вредного воздействия химических веществ на работающих, важная роль принадлежит промышленной токсикологии, изучающей действие на организм промышленных ядов, с целью создания безвредных и безопасных условий труда.

Основными задачами промышленной токсикологии, сформулированными в конце двадцатых годов прошедшего века Н.С.Правдиным, являются: 1) гигиеническое нормирование содержания вредных веществ в объектах производственной среды (путем установления предельно-допустимых концентраций (ПДК) в воздухе рабочей зоны); 2) гигиеническая экспертиза токсических веществ (включает токсикологическую оценку промышленных ядов путем определения смертельных доз и концентраций при различных путях введения, определение кумулятивных свойств и порогов вредного действия, оценки кожно-раздражающего, кожно-резорбтивного и сенсибилизирующего действия, изучение отдаленных эффектов); 3) гигиеническая стандартизация сырья и продуктов (предусматривающей ограничение содержания токсических соединений в промышленном сырье и готовых продуктах, с учетом их вредности и опасности).

Классификация промышленных ядов. В профилактической токсикологии существует несколько классификаций промышленных ядов, основанных на химических свойствах и характере действия, степени токсичности и опасности (Рисунок № 20).

 

Рисунок № 20  
Классификация промышленных ядов
По характеру воздействия на организм человека
По пути проникновения в организм
По химическим классам соединений
По степени токсичности
По степени воздействия на организм
общетоксическое, раздражающее, сенсибилизирующее, канцерогенное, мутагенное, влияющее на репродуктивную функцию
действие через дыхательные пути, пищеварительную систему, кожный покров
органические, неорганические, элементоорганические
чрезвычайно токсичные, высокотоксичные, умеренно токсичные, малотоксичные
вещества чрезвычайно опасные, вещества высокоопасные, вещества умеренно опасные, вещества малоопасные

 


Для разработки профилактических и лечебных мероприятий промышленные яды классифицируются, согласно их токсико-биологическим свойствам, на удушающие, раздражающие, наркотические вещества и вещества, действующие на кроветворную систему, паренхиматозные и нервные яды. Существует также классификация промышленных ядов по их взаимодействию с ферментными системами, а по специфическому токсическому действию различают аллергены, тератогены, мутагены, канцерогены.

Химические вещества, обладающие в экспериментальных условиях канцерогенным и коканцерогенным действием, классифицируются на три класса: с высокой, средней и низкой канцерогенной активностью. Химические вещества по степени канцерогенной активности для человека, согласно Международного агентства по изучению рака (МАИР, 1982 г.), делятся на вещества с доказанной канцерогенностью для человека и вещества с вероятной канцерогенностью для человека. Существует также классификация канцерогенных соединений по химической структуре.

Влияние промышленных ядов на организм. Физико-химические свойства промышленных ядов во много определяют их поступление, распределение и характер выведения из организма. При этом особенности распределения химических веществ зависят от ряда закономерностей. Промышленные органические яды, являясь неэлектролитами, очень хорошо разносятся кровью в различные органы и ткани, а многие неорганические яды, и в частности, металлы депонируются в них.

Промышленные яды, поступившие в организм, подвергаются различным химическим превращениям, в результате которых в большинстве случаев образуются менее токсичные продукты, легко выводимые из организма. В то же время, некоторые вредные вещества плохо поддаются биотрансформации и метаболизму, вследствие чего количество их в тканях не меняется, а в ряде случаев, при хроническом поступлении – возрастает. Основными биохимическими реакциями метаболизма являются окисление, восстановление, гидролитическое расщепление, образование парных соединений с теми или иными биосубстратами, а также дезаминирование, метилирование и ацетилирование (Рисунок № 21).

Токсическое действие промышленных ядов чрезвычайно многообразно, однако установлен ряд общих закономерностей в отношении путей поступления их в организм, всасывания, распределения и превращения в организме, выделения из него, характера действия промышленных ядов в связи с их химической структурой и физическими свойствами.

 
Основным и наиболее опасным путем поступления химических веществ в организм является ингаляционный путь. Учитывая большую поверхность легочных альвеол (90-100 м2) создаются благоприятные условия для проникновения газов, паров и пыли в кровь. Опасность отравления при вдыхании газов, паров, аэрозолей, а также паро-газо-аэрозольных смесей зависит от степени их растворимости в воде и жирах, что в свою очередь определяется химической структурой яда. С увеличением объема легочного дыхания и скорости кровотока, сорбция яда происходит быстрее, поэтому при выполнении физической работы или пребывании в условиях высокой температуры воздуха, когда объем дыхания и скорость кровотока резко увеличиваются, отравление может наступить быстрее.

Особенности поступления и биотрансформации промышленных ядов в организме  
Пути поступления промышленных ядов  
Превращение промышленных ядов  
Выделение промышленных ядов
Через дыхательные пути, желудочно-кишечный тракт, неповрежденную кожу, слизистые оболочки глаз  
Микросомальное окисление (гидроксилирование ациклических, ароматических соединений, N-гидроксилирование аминов, S-окисление, дезаминирование и сульфирование). Микросомальное восстановление (восстановление нитро- и азосоединений). Немикросомальное окисление (дезаминирование, окисление спиртов и альдегидов, ароматизация ациклических соединений). Немикросомальное восстановление (восстановление альдегидов и кетонов). Прочие реакции (гидролиз сложных эфиров и амидов с участием микросомальных и немикросомальных ферментов, дегидроксилирование, дегалогинирование, восстановление ненасыщенных соединений и др.).
Через легкие, почки, желудочно-кишечный тракт, кожу, с грудным молоком
Рисунок № 21

В производственных условиях поступление вредных веществ в организм через желудочно-кишечный тракт наблюдается сравнительно редко. В полость рта яды чаще всего попадают с загрязненных рук. Возможно также заглатывание ядовитых веществ из воздуха при задержке их на слизистых оболочках носоглотки и полости рта. В желудочно-кишечном тракте всасывание ядов происходит главным образом в тонких кишках и лишь в незначительной степени – в желудке. Кислая среда желудочного сока, растворимость вредных веществ в липидах, характер потребляемой пищи оказывают существенное влияние на всасывание ядовитых веществ и их поступление в печень.

Количество химических веществ, которое может проникнуть через кожу, находится в прямой зависимости от их растворимости в воде, величины поверхности соприкосновения с кожей и скорости кровотока в ней. Через кожный эпидермис, потовые и сальные железы, волосяные мешочки могут проникать вредные вещества, которые хорошо растворяются в жирах и липидах. Речь идет, прежде всего, о неэлектролитах (углеводороды ароматического и жирного ряда, их производные, металлоорганические соединения); электролиты же, диссоциирующие на ионы, через кожу не проникают.

 
Попавшие в организм вредные вещества выделяются через легкие, почки, желудочно-кишечный тракт и кожу. Биологический период полувыведения (время, необходимое для уменьшения в организме или в отдельных органах концентраций вещества на 50%) имеет временную зависимость, так как наибольшая скорость выведения вредных веществ наблюдается в первые дни отравления с последующим замедлением элиминации ядов из организма.

Патологические процессы, развивающиеся при воздействии промышленных ядов, бывают крайне вариабельными и отличаются глубиной их нарушения, которые, в свою очередь, обусловлены не только концентрацией (дозой) поступившего вредного вещества, временем действия и периодом выведения из организма, но и индивидуальной, возрастной и половой чувствительностью.

Многие яды, помимо общетоксического действия, обладают выраженным специфическим влиянием на те или иные ферментативные системы организма, блокируют синтез нуклеиновых кислот и белка, повреждают структурную целостность мембранных образований клетки и внутриклеточных структур, форменные элементы крови.

Изложенные закономерности обменных нарушений сопровождаются функциональными и органическими поражениями различных органов и систем. Для действия некоторых промышленных ядов характерно избирательное поражение центральной и периферической нервной системы, проявляющееся нейроинтоксикациями и нейротоксикозами. Преимущественное поражение органов дыхания, возникающее при остром ингаляционном воздействии, приводит к развитию ряда клинических синдромов (острый токсический ларингофаринготрахеит, острый токсический бронхит и бронхиолит, острый токсический отек легких, острая токсическая пневмония).

При воздействии гепатотропных ядов клиническая картина интоксикации характеризуется развитием холестаза и токсического гепатита. Поражение мочевыделительной системы сопровождается вовлечением в патологический процесс почек и развитием токсической нефропатии. Длительный контакт с некоторыми промышленными ядами и, в частности, ароматическими аминосоединениями может привести к развитию доброкачественных и злокачественных опухолей мочевыводящих путей.

Токсикометрия химических веществ. В целях предупреждения отрицательных последствий влияния промышленных ядов на состояние здоровья рабочих и населения в целом, сложилась система предупредительных мероприятий, среди которых одним из главных является токсикологическая оценка химических веществ. Представляя собой совокупность методов и приемов количественной оценки токсичности и опасности ядов, токсикометрия, как методологическая основа промышленной токсикологии и эко-токсикологии, занимает особое место в оценке степени токсичности и опасности химических веществ и их композиций.

Токсикометрия химических веществ включает большой диапазон исследований и оценок, но среди них обязательными являются такие этапы, как установление смертельных эффектов, выявление и количественная характеристика кумулятивных свойств, изучение кожно-раздражающего, кожно-резорбтивного, сенсибилизирующего действия, хронического воздействия на организм с целью установления порогов вредного действия. Особое значение приобретают токсико-кинетические и метаболические критерии оценки, исследование таких отдаленных эффектов, как бластомогенез и мутагенез, влияние на репродуктивную систему. В таблице № 19 приведены критерии класса опасности химических веществ на основе ведущих токсикометрических показателей.

 


Таблица № 19. Критерии класса опасности химического вещества.

 

Наименование показателя Наименование класса опасности
I II III IV
Предельно допустимая концентрация (ПДК) вредных веществ в воздухе рабочей зоны, мг/м3 Менее 0,1 0,1-1,0 1,1-10,0 Более 10,0
Средняя смертельная доза при введении в желудок, мг/кг Менее 15 15-150 151-5000 Более 5000
Средняя смертельная доза при нанесении на кожу, мг/кг Менее 100 100-500 501-2500 Более 2500
Средняя смертельная концентрация в воздухе, мг/м3 Менее 50 500-5000 5001-50 000 Более 50 000
Коэффициент возможности ингаляционного отравления (КВИО) Более 300 300-30 29-3 Менее 3
Зона острого действия Менее 6 6,0-18,0 18,1-54,0 Более 54,0
Зона хронического действия Более 10,0 10,0-5,0 4,9-2,5 Менее 2,5

 

Токсикометрия – раздел токсикологии, посвященный определению токсичности и опасности химических соединений. Токсикометрия является системой принципов и методов количественной оценки токсичности и опасности ядов.

Токсикометрическая информация в обязательном порядке должна включать не только верхние показатели токсичности (смертельные концентрации и дозы), но и самые низкие, при которых возникают начальные сдвиги в обменных процессах в организме. Наиболее значимыми показателями в характеристике токсичности ядов по смертельному эффекту являются средняя смертельная концентрация в воздухе (СL50), средняя смертельная доза (DL50) при введении в желудок или другими путями.

CL50 – концентрация, вызывающая гибель 50% подопытных животных при ингаляционном воздействии веществ при определенной экспозиции и определенном сроке последующего наблюдения.

DL50 – доза, вызывающая гибель 50% подопытных животных при введении в желудок, в брюшную полость, при нанесении на кожу и т.д. при определенных условиях и определенном сроке последующего наблюдения.

 

Основой для установления безопасных уровней содержания химических веществ в различных объектах окружающей среды является концепция пороговости вредного действия ядов, определяющая, что для каждого химического вещества, вызывающего те или иные неблагоприятные эффекты в организме, существуют дозы (концентрации), при которых изменение функций организма будут минимальными (пороговыми). Пороговость всех типов действия – ведущий принцип гигиены и профилактической токсикологии.

 
Limacпорог однократного (острого) действия – минимальная концентрация (доза), вызывающая изменения биологических показателей на уровне целостного организма, которые выходят за пределы приспособительных физиологических реакций.

Limchпорог хронического действия – минимальная концентрация, вызывающая вредное действие в хроническом эксперименте по 4 часа пять раз в неделю на протяжении менее 4 месяцев.

Limch spпорог отдаленных эффектов – минимальная концентрация (доза) вещества, вызывающая изменения биологических функций отдельных органов и систем организма, которые выходят за пределы приспособительных физиологических реакций в условиях хронического воздействия.

Определение средних смертельных концентраций и доз, порогов вредного действия необходимо для оценки опасности вредных веществ, установления возможности острых и хронических отравлений, а также установления безопасных концентраций расчетными методами. Вероятность возникновения вредных для здоровья эффектов, в реальных условиях производства, или применения химических веществ, представляет собой такую характеристику вещества, как опасность вещества. В настоящее время выделено две группы количественных показателей опасности: критерий потенциальной опасности (потенциальная возможность поступления вредных веществ в организм) и критерий реальной опасности (компенсаторные свойства организма по отношению к яду).

Одним из путей повышения надежности разрабатываемых гигиенических регламентов химических веществ в производственной и окружающей среде являются учет и использование адаптационных реакций организма. Однако, в практике гигиенического регламентирования, пороговые и предельно допустимые концентрации вредных веществ устанавливаются без учета состояния адаптационных процессов организма.

В указанном аспекте представляется важным разграничение истинных физиологических приспособительных реакций (адаптация) от скрытой, временно компенсированной патологии в условиях научного обоснования порогов вредного действия химических веществ на организм.

Адаптация – истинное приспособление организма к изменяющимся условиям окружающей среды, которое происходит без обратимых нарушений данной биологической системы и без превышения нормальных (гомеостатических) способностей ее реагирования.

Компенсация – приспособление организма к изменяющимся условиям окружающей среды, обусловленное возникновением напряженности в системах гомеостаза, которые превышают пределы обычных (естественных) возможностей. Компенсация является временно скрытой патологией и со временем может обнаруживаться в виде явных патологических изменений (декомпенсации).

При длительном воздействии промышленных ядов и снижении защитных иммунологических реакций, достаточно быстро наступает срыв адаптации, и фаза физиологической адаптации переходит в фазу компенсированной патологии. При этом промышленные яды в высоких дозах могут приводить к значительным морфо-функциональным повреждениям внутренних органов и систем организма.

 
Потенциальный показатель опасности характеризует коэффициент возможного ингаляционного отравления (КВИО). Анализ оценки опасности различных промышленных ядов по величине КВИО показывает, что в ряде случаев малотоксичное, но высоколетучее вещество может оказаться более опасным в развитии острого отравления, чем высокотоксичное, но малолетучее соединение.

КВИО – коэффициент возможности ингаляционного отравления – отношение максимально достижимой концентрации вещества в воздухе при 200С к средней смертельной концентрации вещества для мышей.

С целью характеристики компенсаторных возможностей организма, его способности к обезвреживанию, выведению вещества и восстановлению поврежденных функций при однократном воздействии используется вычисление зоны острого (однократного) действия (Zac), а при хроническом действии вещества вычисляется зона хронического действия (Zch). Опасность хронической интоксикации прямо пропорциональна величине зоны хронического действия, то есть, чем зона хронического действия шире, тем больше опасность хронического отравления, и наоборот (Таблица № 20).

 

Таблица № 20. Общая схема параметров токсикометрии.

 

Первичные (Экспериментальные) Производные
Смертельные дозы или концентрации: CL50, CL16, CL84, DL50 и др. Зона смертельного действия или
Коэффициент межвидовой чувствительности (КВЧ) Зона острого действия  
Порог острого интегрального действия Limac (integr.) Зона специфического действия  
Порог избирательного (патогенетического действия) Limac sp  
Коэффициент кумуляции Ccum  
Порог хронического действия Limch (integr.) Зона хронического действия  
Порог отдаленных эффектов* Limch sp Зона биологического действия  
Безопасные уровни воздействия ОБУВ, ПДК, ДОК и др. Коэффициент запаса  

 

* В настоящее время учитывается порог отдаленных эффектов (ускоренное старение, канцерогенез, мутагенез, гонадотропное и эмбриотропное действие и др.).

 

Zac – зона острого действия – отношение средней смертельной концентрации вещества к порогу однократного действия.

Zch – зона хронического действия – отношение порога однократного действия к порогу хронического действия.

 
Учитывая многообразие общетоксического и специфического (кожно-раздражающего, кожно-резорбтивного) действия химических веществ на организм, характера биотрансформации промышленных ядов и особенностей выведения из организма дополнительно используются такие токсикометрические параметры, как вычисление зоны биологического действия (Zbiol), зоны специфического действия (Zsp).

Zbiol – зона биологического действия – отношение средней смертельной концентрации к порогу хронического действия.

Zsp – зона специфического действия – отношение порога острого действия, установленного по интегральным показателям, к порогу острого действия по специфическим показателям.

Опасность токсических веществ для человека в значительной мере предопределяется их способностью к кумуляции, поэтому изучение кумуляции является непременным условием токсикологической характеристики того или иного химического вещества и необходимо при их гигиеническом регламентировании. Процессы кумуляции зачастую обусловливают развитие хронических отравлений. При накоплении самого яда в организме говорят о материальной кумуляции, а при накоплении изменений в организме (биохимических, гистохимических, функциональных и пр.), возникших при повторном воздействии химического вещества – о функциональной кумуляции.

Количественная оценка функционального кумуляционного эффектавредного вещества называется коэффициентом кумуляции (Ccum) и определяется как отношение суммарной дозы, полученной организмом при неоднократном экспериментальном введении вещества в количестве, равном среднесмертельной дозе (концентрации), то есть DL50, к той же величине, но при однократном введении.

Ccum= (∑DL50)/ DL50

Обратное отношение этих двух величин (S) называется степенью кумуляции и обычно выражается в процентах. По кумулятивному воздействию все токсичные вещества также делят на четыре группы:

· сверхкумулятивные (Ccum <1, S> 100);

· с выраженной кумулятивностью (Ccum= 1∑3, S = 100 ∑ 34);

· среднекумулятивные (Ccum= 3∑5, S = 33 ∑20);

· слабокумулятивные (Ccum> 5, S < 20).

 
Гигиеническое нормирование промышленных ядов. История становления и развития медицины труда неразрывно связана с разработкой методологических основ оздоровления производственной среды и профилактики профессиональных заболеваний. Гигиеническое нормирование факторов, влияющих на человека в процессе трудовой деятельности, является главным звеном создания безопасных условий труда и рационального трудового процесса. В связи с этим особую значимость приобретает гигиеническая регламентация содержания вредных веществ в воздухе рабочей зоны и других объектах окружающей среды (ГН «Предельно-допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» № 1.02.011-94; МУ «К постановке исследований для обоснования санитарных стандартов вредных веществ в воздухе рабочей зоны» № 2163-80 от 04.04.1980 г.; МУ «По применению расчетного метода обоснования ОБУВ вредных веществ в воздухе рабочей зоны» № 1599-77 от 02.02.1977, М.).

При установлении ПДК вредных веществ в воздухе рабочей зоны руководствуются следующими принципами: 1) принцип приоритета медицинских показаний перед технической достижимостью сегодняшнего дня и другими технико-экономическими критериями; 2) принцип обеспечения опережения разработки нормативов внедрению в производство новых химических соединений.

Гигиеническое нормирование основывается на признании принципа пороговости всех типов действия химических соединений (в том числе мутагенного и канцерогенного) на целостный организм и должно учитывать необходимость комплексного подхода к установлению порогов вредного действия.

Гигиеническое нормирование новых химических веществ производится в три этапа: 1. обоснование ориентированных безопасных уровней воздействия (ОБУВ); 2. обоснование ПДК; 3. корректировка ПДК путем сравнения условий труда работающих.

Первый этап приурочивается к периоду лабораторной разработки новых соединений; второй этап – к периоду полузаводских испытаний и проектированию производств; третий этап – выполняется после внедрения веществ в производство в сроки, устанавливаемые в зависимости от токсикологической характеристики вещества и гигиенической характеристики производства, но не позднее 3-5 лет с момента внедрения.

ПДК (предельно допустимые концентрации вредных веществ в воздухе рабочей зоны) – концентрации, которые при ежедневной (кроме выходных дней) работе в течение 8 ч. или при другой продолжительности, но не более 41 ч. в неделю, в течение всего рабочего стажа не могут вызывать заболевания или отклонения в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений.

ПДК в воздухе рабочей зоны устанавливаются для химических соединений, обладающих вредным действием, которые могут находится в воздушной среде в виде газов, паров, аэрозолей, а также смеси паров и аэрозоля.

Определяется максимально разовая и для высоко кумулятивных веществ – среднесменная концентрация. Степень кумулятивности определяется для каждого вещества путем определения коэффициента кумуляции, зоны биологического и хронического действия, а при корректировке ПДК – по результатам повторных клинико-гигиенических наблюдений.

Максимально-разовые концентрации преимущественно используются для гигиенической оценки технологического процесса и оборудования.

Среднесменная ПДК – средняя концентрация, полученная при непрерывном или прерывистом отборе проб воздуха при суммарном времени не менее 75% продолжительности рабочей смены, или средневзвешенная за время всей смены концентрация в зоне дыхания работающих на местах постоянного или временного пребывания.

 
Контроль среднесменных величин ПДК необходим и важен как с точки зрения получения интегрального критерия оценки состояния производственной среды, так и для более адекватного анализа зависимости показателей состояния здоровья от условий труда. Особенно это целесообразно при анализе данных профосмотров работающего контингента, установлении профессиональной этиологии заболеваний, формировании «групп – риска» при диспансеризации промышленных и сельскохозяйственных рабочих, а также других категорий трудящихся.




Поделиться с друзьями:


Дата добавления: 2014-10-31; Просмотров: 771; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.071 сек.