КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интерференция несовершенных скважин
Метод эквивалентных фильтрационных сопротивлений (метод Борисова)
Данный метод называется методом Борисова и позволяет сложный фильтрационный поток в пласте при совместной работе нескольких батарей эксплуатационных и нагнетательных скважин разложить на простейшие потоки – к одиночно работающей скважине и к одиночно работающей батареи. Реализация данного метода достигается введением понятий внутреннего и внешнего фильтрационных сопротивлений, которые придают простейший физический смысл членам уравнений, используемых для подсчетов дебитов и значений потенциальных функций. Для выяснения этих понятий сравним формулы (7.30) или (7.31) с законом Ома I=U / R, где I – ток, U – разность потенциалов и R – сопротивление. Из сравнения видно, что фильтрационное сопротивление определяется величиной знаменателя правой части (7.30), который состоит из двух слагаемых. Если в (7.30) оставить только первое слагаемое, то оно будет выражать дебит в прямолинейно-параллельном потоке через площадь величиной nh sна длине L. Таким образом, первое слагаемое выражает фильтрационное сопротивление потоку от контура питания к участку прямолинейной бесконечной цепочки, занятому n скважинами, в предположении замены батареи галереей. Борисов назвал эту часть фильтрационного сопротивления – внешним фильтрационным сопротивлением: . (7.32) Оставим теперь в (7.30) только второе слагаемое. В этом случае получим аналог формулы Дюпюи для суммарного дебита n скважин при плоскорадиальном течении и в предположении, что каждая скважина окружена контуром питания длиной s. Таким образом, второе слагаемое выражает местное фильтрационное сопротивление, возникающее при подходе жидкости к скважинам. Появление этого сопротивления объясняется искривлением линий тока у скважин и, по Борисову, оно получило название внутреннего . (7.33) На внешнее и внутреннее фильтрационные сопротивления разделяется также полное фильтрационное сопротивление кольцевой батареи: . (7.34) Здесь r выражает фильтрационное сопротивление потоку от контура питания к кольцевой батареи радиуса а в предположении, что поток плоскорадиален и батарея заменена галереей. Внутреннее сопротивление r / – это сопротивление плоскорадиального потока от воображаемого контура окружности длиной 2pа/n к скважине. Величина 2pа/n – длина дуги сектора радиуса а, который содержит одну из скважин батареи.
Электрическая схема в случае одной батареи (рис.7.12) имеет вид (рис.7.13). На рис.7.12 затемнены области внутреннего сопротивления.
Рассмотрим случай притока к n эксплуатационным и нагнетательным батареям скважин и составим схему сопротивлений. Предположим, что скважины i - йбатареи имеют забойные потенциалы jсi (i = 1,...,n), пласт имеет контурные потенциалы jк1и jк2(рис. 7.14). Пусть jк1 > jк2. Очевидно, поток от контура питания к первому ряду скважин будет частично перехватываться первой батареей и частично двигаться ко второй. Поток ко второй батарее будет частично перехватываться второй батареей, частично двигаться к третьей и т.д. Этому движению отвечает разветвленная схема фильтрационных сопротивлений (рис. 7.15).
Расчет ведется от контура с большим потенциалом к контуру с меньшим потенциалом, а сопротивления рассчитываются по зависимостям: · прямолинейная батарея (7.35) · круговая батарея (7.36) где Li – расстояние между батареями (для i = 1 - L1 = Lк1); ri – радиусы батарей (для i = 1 - r0 = rк); ki – число скважин в батарее. Дальнейший расчет ведется, как для электрических разветвленных цепей, согласно законам Ома и Кирхгоффа: · - алгебраическая сумма сходящихся в узле дебитов равна нулю, если считать подходящие к узлу дебиты положительными, а отходящие – отрицательными. · - алгебраическая сумма произведения дебитов на сопротивления (включая и внутренние) равна алгебраической сумме потенциалов, действующих в замкнутом контуре. При этом и дебиты и потенциалы, совпадающие с произвольно выбранным направлением обхода контура, считаются положительными, а направленные навстречу обходу отрицательными. Следует помнить, что для последовательных сопротивлений r= S ri, а для параллельных -
Если одна из границ непроницаема, то расход через неё равен нулю, и в соответствующем узле схемы фильтрационных сопротивлений задаётся не потенциал, а расход. На рис. 7.16 показана схема в случае непроницаемости второго контура, где вместо потенциала jк2 (рис.7.15) задано условие SGi = 0.
Приведенные формулы тем точнее, чем больше расстояние между батареями по сравнению с половиной расстояния между скважинами. Если расстояние между скважинами много больше расстояния между батареями, то расчет надо вести по общим формулам интерференции скважин, или использовать другие виды схематизации течения, например, заменить две близко расположенные соседние батареи скважин с редкими расстояниями между скважинами (рис. 7.17,а) эквивалентной батареей – с суммарным числом скважин и расположенной посредине (рис.7.17,b).
В случае интерференции скважин несовершенных по степени вскрытия в условиях течения по закону Дарси вначале определяется дебит совершенных скважин с радиусами rс по формулам теории интерференции для притока к стокам и источникам на плоскости, а затем фильтрационное сопротивление каждой скважины увеличивается на величину коэффициентов несовершенства Сi (i = 1,...,4). При использовании метода эквивалентных фильтрационных сопротивлений двухчленный закон фильтрации надо представить в виде , (7.50) где можно рассматривать как нелинейное сопротивление, добавляемое к внутреннему сопротивлению r. Например, в схеме фильтрационных сопротивлений для условий линейного закона фильтрации, внутренние сопротивления r следует заменить суммой , где . Дальнейший расчет ведется, как и ранее, при помощи законов Ома и Кирхгофа, но система уравнений получается уже не линейной, а содержащей квадратные уравнения, что приводит к усложнению вычислений.
Дата добавления: 2014-11-25; Просмотров: 584; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |