Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Краткая теория




Изучение закона сохранения энергии на примере маятника Максвелла

Цель работы: изучить закон сохранения энергии

Оборудование:

1. Маятник Максвелла;

2. Линейка;

3. Секундомер;

4. Штангенциркуль.

 

Маятник Максвелла представляет собой маховик с радиусом R на оси радиуса r (см. рис. 1).

       
   
 
 
Рис. 1. Схема маятника Максвелла

 

 


На эту ось с двух сторон наматываются нити, в результате чего маховик поднимается на высоту h. При освобождении маховик движется вниз и раскручивается под действием момента, создаваемого силами натяжения нитей

Линейное ускорение , направленное вниз, маятник приобретает под действием разности сил натяжения нитей и силы тяжести. Найдем это ускорение, пренебрегая силами сопротивления. Из следствия из второго закона Ньютона: ma = mg – T; согласно основному уравнению динамики вращательного движения: (*). Учитывая, что момент инерции маховика: (моментом инерции оси можно пренебречь, моментом инерции тела относительно оси называется сумма произведений масс всех материальных точек тела на квадраты их расстояний до оси), и выразив угловое ускорение через линейное: , уравнение (*) можно представить в скалярном виде: , тогда решая полученную систему уравнений:

Можно получить:

По закону сохранения и превращения энергии (в замкнутой системе энергия может переходить из одних видов в другие и предаваться от одного тела другому, но ее общее количество остается неизменнной), если маятник Максвелла спустится с высоты h, то часть его потенциальной энергии mgh перейдет в кинетическую энергию поступательного движения и кинетическую энергию вращательного движения , а часть пойдет на совершение работы А против сил сопротивления:

(1)

Выразив угловую скорость маховика через линейную получим из (1):

(2)

При равноускоренном движении без начальной скорости

Таким образом, измерив время спуска маятника Максвелла, можно найти его линейную скорость в нижней точке υ и, используя (2), определить работу сил сопротивления. Зная А, можно рассчитать момент сил сопротивления (моментом сил называется по формуле:

(3)

 




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 382; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.