КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Графічний метод розв’язування ЗДЛП
Постановка задачі Необхідно знайти экстремум наступної функції (3.4), при обмеженнях виду: (3.5) і умовах невід’ємності, що накладають на змінні: . (3.6) Аналіз задачі (3.4)-(3.6) 1. Областю припустимих розв’язків задачі (3.4)–(3.6) служить або замкнуте опукле багатогранне тіло або розімкнуте опукле багатогранне тіло. Таке тіло визначається системою обмежень (3.5) і умовами невід’ємності (3.6), які накладаються на змінні х 1, х 2. 2. Функція (3.4) визначає в площині Х1 0 Х2 сімейство прямих, що проходять через початок координат. Таке сімейство прямих описується рівняннями виду: . 3. Обертаючи пряму (3.4) відносно початку координат, можна знайти ту вершину ОПР, в якій функція (3.4) досягає свого оптимального значення (якщо таке значення існує). Крім того, при обертанні такої прямої можна переконатися в нерозв'язності задачі (3.4)-(3.6). Алгоритм розв’язування задачі (3.4)-(3.6) 1. У площині Х1 0 Х2 будуємо область припустимих розв’язків задачі, що визначається співвідношеннями (3.5)–(3.6). Помітимо, що якщо така область замкнута, то задача (3.4)-(3.6) завжди має рішення.
2. У площині Х1 0 Х2 будуємо пряму лінію з рівнянням . 3. Обертаючи пряму відносно початку координат, визначаємо крайню точку ОПР або переконуємося в нерозв'язності такої задачі. У розглянутій задачі 4. Далі визначаємо координати точки оптимуму й підставляємо їх у вираз для функції мети. Розглянемо приклад. Приклад. Для виробництва двох видів виробів А й В підприємство використовує три типи технологічного встаткування. Кожен виріб повинен пройти обробку на кожному типі встаткування. Час обробки виробу на кожнім устаткуванні наведено в таблиці. Крім того, в таблиці зазначені витрати, пов'язані з виробництвом одного виробу кожного виду
Підприємство може використати встаткування першого й третього типів не більше 26 й 39 годин відповідно. При цьому встаткування другого типу доцільно використовувати не менше 4 годин. Потрібно визначити, скільки виробів кожного виду варто виготовляти даному підприємству, щоб собівартість кожного виробу була мінімальною. Сформулюємо задачу математично. Позначимо через х 1 і х 2 кількість виробів видів А и В відповідно, який повинне виготовляти дане підприємство при мінімальних загальних витратах . Тоді функція, відповідальна за собівартість одного виробу, визначається співвідношенням: . (3.7) Задача розв’язується в рамках наступних обмежень (3.8) (3.9) Висновок: 1) математична постановка задачі складається у визначенні такого невід’ємного розв’язку системи обмежень (3.8), що доставляє мінімум функції (3.7); 2) беручи до уваги, що математична модель (3.7)–(3.9) містить у собі лише дві змінні, задача може бути вирішена графічно в площині Х 10 Х 2.
В силу того, що область замкнута, вихідна ЗДЛП завжди буде мати розв’язок. Зобразимо в площині Х1 0 Х2 рівняння прямої . Виразимо із цього рівняння х 2: . Очевидно, що при збільшенні h кутовий коефіцієнт буде рости (отже, буде збільшуватися й відповідна похідна). Стрілки на графіку вказують напрямок збільшення h, отже, максимум цільової функції буде досягнутий у точці А, а мінімум – у точці В. Визначимо координати точки В із системи рівнянь: . Одержимо . Отже, оптимальним планом виробництва є план, при якому підприємство буде виготовляти три вироби виду А и один виріб виду В. При цьому собівартість одного виробу складе 2,25 грошових одиниць, тобто
Дата добавления: 2014-11-25; Просмотров: 560; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |