Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физические основы ультразвуковой диагностики




 

В 1880 г. Пьером и Марией Кюри был открыт пьезоэлектрический эффект, благодаря которому получают звуковые высокочастотные колебания, лежащие в диапазоне выше полосы частот, воспринимаемых человеческим ухом (более 20 000 Гц), впоследствии они были названы ультразвуковыми. Свое применение пьезоэффект нашел во время Первой мировой войны, когда К. В. Ши‑ловский и П. Ланжевен разработали сонар, использовавшийся для навигации судов, определения расстояния для цели и поиска подводных лодок.

В 1929 г. С. Я. Соколов применил ультразвук для неразрушаю‑щего контроля в металлургии (дефектоскопия). Этот крупнейший советский физик‑акустик явился родоначальником ультразвуковой интроскопии и автором наиболее часто используемых и совершенно различных по своей сути методов современного звуко‑видения. В 1937 г. попытки использования ультразвука в целях медицинской диагностики привели к появлению одномерной эхоэн‑цефалографии. Однако лишь в начале 1950‑х гг. удалось получить ультразвуковое изображение внутренних органов и тканей человека.

Излученные в тело пациента, ультразвуковые колебания отражаются от исследуемых тканей, а также границ между органами и, возвращаясь в ультразвуковой сканер, обрабатываются и измеряются после их предварительной задержки для получения фокусированного изображения. Полученные данные поступают на экран монитора, позволяя производить оценку состояния внутренних органов. Датчик является основным компонентом диагностической системы, который конвертирует электрические сигналы в ультразвуковые колебания и производит электрические сигналы, получая отраженное эхо от внутренних тканей.

Идеальный датчик должен быть эффективен как излучатель и чувствителен как приемник, иметь хорошие характеристики излучаемых им импульсов со строго определенными показателями, а также принимать широкий диапазон частот, отраженных от исследуемых тканей. В электронных датчиках ультразвуковые колебания возбуждаются благодаря подаче высоковольтных импульсов на пьезокристаллы. Количество раз, сколько кристалл вибрирует за секунду, определяет частоту датчика.

Датчики с высокой частотой колебаний обеспечивают лучшее разрешение изображения при исследовании неглубоко расположенных тканей, так же как низкочастотные датчики позволяют обследовать более глубоко расположенные органы, уступая высокочастотным качеством изображения. Это разногласие является основным определяющим фактором при использовании датчиков. Для улучшения характеристик датчиков и увеличения области применения ультразвуковых сканеров при различных медицинских обследованиях используют ультразвуковые гели и другие жидкости. В ультразвуковой диагностике применяются различные конструкции датчиков: представляющие собой диски с одним элементом, а также объединяющие несколько элементов, расположенных по окружности или вдоль длины датчика, производящие различные форматы изображения, которые необходимы или предпочтительны при проведении исследования различных органов.

В основном используются пять типов датчиков: аннулярные, линейные, механические секторные, конвексные, датчики с фазированным сканированием, различающиеся по методу формирования ультразвуковых колебаний; методу излучения; создаваемому ими формату изображения на экране монитора (см. рис. 3).

 

В диагностических целях обычно используют датчики с частотами: 3,0 МГц, 3,5 МГц, 5,0 МГц, 6,5 МГц, 7,5 МГц. Кроме того, в последние годы на рынке ультразвуковой техники появились приборы, оснащенные высокочастотными датчиками 10–20 МГц. Применение датчиков в зависимости от области исследования: 1) 3,0 МГц (конвексные и секторные) используются в кардиологии;

2) 3,5 МГц (конвексные и секторные) – в абдоминальной диагностике и исследованиях органов малого таза;

3) 5,0 МГц (конвексные и секторные) – в педиатрии;

4) 5,0 МГц с коротким фокусом могут применяться для обследования молочной железы;

5) 6,0–6,5 МГц (конвексные, линейные, секторные, аннулярные) – в полостных датчиках;

6) 7,5 МГц (линейные, датчики с водной насадкой) – при исследовании поверхностно расположенных органов (щитовидной железы, молочных желез, лимфатической системы).

 




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 731; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.