Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Масса и импульс материальной точки




Второй закон Ньютона можно записать в иной форме, которая приведена самим Ньютоном в его главном труде «Математические начала натуральной философии». Если на тело (материальную точку) действует постоянная сила, то постоянным является и ускорение где — начальное и конечное значения скорости тела. Подставив это значение ускорения во второй закон Ньютона, получим: или (1)

В этом уравнении появляется новая физическая величина — импульс материальной точки. Импульсом материальной точки называют величину равную произведению массы точки на ее скорость.

Обозначим импульс (его также называют иногда количеством движения) буквой . Тогда (1). Из формулы (1) видно, что импульс — векторная величина. Так как m > 0, то импульс имеет то же направление, что и скорость.

Единица импульса не имеет особого названия. Ее наименование получается из определения этой величины:

Чтобы определить массу некоторого тела, нужно сравнить ее с массой тела, принятого за эталон массы. Можно также сравнить массу данного тела с массой некоторого тела с уже известной массой (определенной путем сравнения с эталоном). Операцию сравнения масс m1 и m2 двух материальных точек (частиц) можно осуществить следующим образом. Поставим эти частицы в такие условия, чтобы их взаимодействием с другими телами можно было пренебречь. Система тел, взаимодействующих только между собой и не взаимодействующих с другими телами, называется замкнутой. Следовательно, мы рассматриваем замкнутую систему двух частиц. Если заставить эти частицы взаимодействовать (например, посредством столкновения друг с другом), их скорости получат приращения Δv1 и Δv2. Опыт дает, что эти приращения всегда имеют противоположные направления, т. е. отличаются знаком. Отношение же модулей приращений скоростей независит от способа и интенсивности взаимодействия данных двух тел. Это отношение принимается равным обратному отношению масс рассматриваемых тел: (1) Более инертное тело, т. е. тело с большей массой, претерпевает меньшее изменение скорости. Приняв во внимание противоположное направление векторов изменения скорости, соотношение (1) можно написать в виде: (2). В классической механике масса тела считается постоянной величиной, не зависящей от скорости тела. При скоростях, малых по сравнению со скоростью света с=3.108 м/с, это предположение практически выполняется. Воспользовавшись постоянством массы, представим (2) как: (3). Произведение массы тела на его скорость называется импульсом тела (по-старому - количество движения). Обозначив импульс буквой р, получим: (4) Определение (4) справедливо для материальных точек и протяженных тел, движущихся поступательно. В случае протяженного тела, движущегося непоступательно, нужно представить тело как совокупность материальных точек с массами , определить импульсы этих точек и затем сложить эти импульсы векторно. В результате получится полный импульс тела: (5) При поступательном движении скорости всех точек тела одинаковы, и (5) переходит в (4). Заменив в (3) произведения массы на скорость импульсами, придем к соотношению , или . Если изменение какой-то величины равно 0, это означает, что величина остается постоянной. Т.о., мы пришли к выводу, что полный импульс замкнутой системы двух взаимодействующих частиц остается постоянным: (6) закон сохранения импульса. В релятивистской механике выражение для импульса имеет более сложный вид, чем (4): (7)В (7) под массой подразумевается так называемая масса покоя тела, с – скорость света. Т.е. (7) можно истолковать так, что масса тела в релятивистской механике не остается постоянной, как в классической, а меняется с ростом скорости, как (8)




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 779; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.