КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Плоско - параллельное движение твердого тела
Плоскопараллельным называется движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных одной неподвижной плоскости (рис.2.10). Для изучения движения тела достаточно изучить движение одного сечения S этого тела плоскостью, параллельной неподвижной плоскости. Движение сечения S в своей плоскости можно рассматривать как сложное, состоящее из двух элементарных движений: а) поступательного и вращательного; б) вращательного относительно подвижного (мгновенного) центра. В первом варианте движение сечения может быть задано уравнениями движения одной его точки (полюса) и вращением сечения вокруг полюса (рис.2.11). В качестве полюса может быть принята любая точка сечения.
Рис. 2.10 Рис. 2.11
Уравнения движения запишутся в виде:
Х А = ХА (t) YА = YА (t) (2.14) jА = jА (t)
Кинематические характеристики полюса определяют из уравнений его движения. Скорость любой точки плоской фигуры, движущейся в своей плоскости слагается из скорости полюса (произвольно выбранной в сечении точки А) и скорости вращательного движения вокруг полюса (вращение точки В вокруг точки А). Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса.
(2.15) (2.16) Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P (рис.1.12). В этом случае скорость любой точки В сечения будет определяться по формуле для вращательного движения
(2.17)
Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.
(2.18)
Рис.2.12
Положение мгновенного центра вращения может быть определено на основании следующих свойств: - вектор скорости точки перпендикулярен радиусу; - модуль скорости точки пропорционален расстоянию от точки до центра вращения (V= w ∙R); - скорость в центре вращения равна нулю. Рассмотрим некоторые случаи определения положения мгновенного центра. 1. Известны направления скоростей двух точек плоской фигуры (рис.2.13). Проведем линии радиусов. Мгновенный центр вращения Р находится на пересечении перпендикуляров, проведенных к векторам скоростей. 2. Скорости точек А и В известны, причем вектора и параллельны друг другу, а линия АВ перпендикулярна (рис. 2. 14). В этом случае мгновенный центр вращения лежит на линии АВ. Для его нахождения проведем линию пропорциональности скоростей на основании зависимости V= wR. 3. Тело катится без скольжения по неподвижной поверхности другого тела (рис.2.15). Точка касания тел в данный момент имеет нулевую скорость в то время, как скорости других точек тела не равны нулю. Точка касания Р будет мгновенным центром вращения. Рис. 2.13 Рис. 2.14 Рис. 2.15
Кроме рассмотренных вариантов скорость точки сечения может быть определена на основании теоремы о проекциях скоростей двух точек твердого тела. Теорема: проекции скоростей двух точек твердого тела на прямую, проведенную через эти точки, равны между собой и одинаково направлены. Доказательство: расстояние АВ изменяться не может, следовательно, V А cosa не может быть больше или меньше V В cosb (рис.2.16).
Рис. 2.16 Вывод: VА cosa = VВ cosb. (2.19)
Дата добавления: 2014-11-25; Просмотров: 495; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |