Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Черное и белое




 

В физиологической оптике различают три вида контраста: по яркости, по насыщенности и по цветовому тону. Количественная мера контраста обозначается буквой К с соответствующим индексом и характеризуется отношением разности двух яркостей (если речь идет о контрасте по яркости) к большей яркости:

K_b=(B1 ‑ B2)/B1

при B1» B2 Принято считать, что при: KBі0,5 – большой контраст

0,5» KB» 0,2 – средний контраст

KBЈ0,2 – малый контраст

Нас пока интересует только контраст по яркости, т.е. яркостный или светлотный контраст.

Эти определения – «малый», «средний», «большой» – введены на основе многочисленных экспериментов, и у нас нет причин сомневаться в правильности этих заключений.

В то же время нет ни одной сколько‑нибудь серьезной книги по фотографии или экспонометрии, которая не воспроизводила бы таблицу интервала яркостей или контрастов различных объектов съемки (табл. 1.).

Таблица 1

Интервал яркостей некоторых объектов съемки

Любопытно сравнить, используя приведенную выше формулу, как сопоставляется понятие «средний контраст» в этой таблице и в формуле физиологической оптики. Дело в том, что в изобразительном искусстве, например в живописи и графике, уже много сотен лет существует своеобразный, но очень точный критерий среднего яркостного контраста. Это разница между черным и белым, и читатель может легко ощутить его количественно, посмотрев на черные буквы на белой странице этой книги. В действительности такой контраст встречается гораздо чаще, чем принято думать, и с его величиной связана наша способность различать цвета. Леон Батист Альберти в своих «10 книгах о зодчестве» писал: «Живописец не располагает ничем другим, кроме белого, для изображения предельного блеска самого отточенного меча и ничем, кроме черного, для изображения ночного мрака. Но какой силой обладает правильное сопоставление белого рядом с черным, ты видишь из того, что благодаря этому сосуды кажутся серебряными, золотыми или стеклянными и кажутся блестящими, хотя они только написаны».[31]

Стоит задуматься над тем, как живопись, располагая только контрастом между белым и черным (ибо нет таких цветных красок, которые были бы ярче белил и темнее жженой кости или сажи), умудряется изображать самые разные объекты при самых различных эффектах освещения. И яркий солнечный день, и пещеру, освещенную факелом, и лунную ночь, и ночную городскую улицу с фонарями, и даже космические и иные фантастические сюжеты!

Каким же образом живописцам удается, имея всегда неизменный интервал яркостей на картине, обусловленный светлотой реальных красок, изображать совершенно разные сюжеты с абсолютно разными интервалами яркостей тех объектов, которые они воспроизводят? Многие теоретики живописи приходили к выводу, что художник особым образом транспонирует яркостные ряды объекта, приспосабливая реальные соотношения к возможностям своей палитры, а возможности ее, как мы знаем, таковы, что все цвета располагаются по яркости в интервале между белилами и сажей. Это соотношение яркостей составляет примерно 1:40 – 1:60.

Такое же соотношение между черными буквами и белой бумагой и между черным сукном и белым снегом в зимний пасмурный день.

Известно, что выражение «особым образом» означает, что точного и ясного объяснения у автора не существует.

А. Зайцев в своей полезной книге «Наука о цвете и живопись», рассуждая о таких важных для каждого художника понятиях, как «яркость», «светлота», пишет: «Диапазон светлот от белого до черного в натуре в тысячи раз превышает диапазон светлот между черной и белой красками в условиях освещения мастерской. Это с полной очевидностью показывает, что отношения яркостей в натуре не могут быть перенесены на холст в их абсолютных величинах, а требуют своего рода перевода, что давно замечено художниками. В ряде классических произведений мировой живописи мы видим удивительные эффекты освещения, поражающие своей правдивостью. Пути этого перевода многообразны и пока не укладываются ни в какие формулы даже в творчестве тех художников, лозунгом которых была наибольшая близость к натуре».[32]

А. Зайцев не замечает, что, говоря о диапазоне светлот от белого до черного в натуре, он смешивает разные вещи. Черное и белое – это не свойства натуры, а свойства нашего восприятия натуры. Действительно, диапазон светлот в натуре огромен, он во много раз больше, чем диапазон светлот между белой и черной красками, но, говоря об этом огромном диапазоне, нельзя употреблять слова «черное» и «белое», потому что черное и белое появляются только в момент восприятия. В природе нет цвета, а есть лишь излучение различного спектрального состава. Феномен цвета ‑ это наш сенсорный ответ на различное спектральное излучение, черное и белое – это тоже всего лишь наш сенсорный ответ на определенный яркостной диапазон.

А. Зайцев пытается объяснить этот феномен при помощи так называемого механизма константности восприятия, что неверно. Он пишет: «Лист белой бумаги мы будем воспринимать как белый и в слабо освещенной комнате, и на солнечном свету, и при электрическом освещении, несмотря на то, что фактически он будет иметь различную степень светлоты. Так же обстоит дело и в отношении черной поверхности. Белая бумага в затемненной комнате отражает меньше света, чем черная на ярком солнечном свету, но мы не путаем черную бумагу с белой».[33]

Тут ошибка: белая бумага всегда отражает больше света, чем черная, потому что у нее больше коэффициент отражения. Надо было сказать, что яркость этой белой бумаги, если измерить ее инструментально, меньше, чем яркость черной, освещенной солнцем. Далее он продолжает: «Для художника, таким образом, вопрос сводится к расчленению в восприятии светлоты или белизны поверхности и ее освещенности в данный момент. Если предложить написать лист белой бумаги, находящийся в тени, начинающему, то он напишет его чистыми белилами, так же, как черную поверхность – черной краской. Но допустим, что перед художником стоит задача передать белизну поверхности такой, какой она представляется ему в действительности. Это возможно лишь в том случае, если он передаст ее кажущуюся светлоту. Для белой поверхности в тени и черной на свету художник берет серые тона, однако на картине они будут восприниматься как белая и черная поверхности. Здесь решающую роль играют так называемые отношения, т.е. весь контекст изображения, контрасты и ряд других моментов…».[34]

Что понимается под «другими моментами»? Как в действительности обстоит дело? Что такое черное и белое применительно к нашему восприятию? Прежде всего ‑ это предметные цвета или поверхности, имеющие различные коэффициенты отражения. (табл. 2).

Таблица 2

Отражательные способности различных поверхностей (картинки пока нет, на днях повесим)

Если представить себе все эти фактуры освещенными одинаково и равномерно рассеянным светом (например, в пасмурную погоду), то среди них будут и белые (например, свежий снег) и черные (черное сукно), а если инструментально измерить их яркости, то окажется, что разница между ними будет соответствовать интервалу, равному приблизительно 1:40–1:60, т.е. именно такому интервалу, который воспринимается нашим зрительным анализатором как разница между белым и черным (илл.28).

Илл.28 Оптимальный визуальный контраст. Шкала яркостей выражена в относительных экспозиционных единицах ("EV") или в относительных единицах яркости. Схема показывает ограниченные сенсорные возможности зрительного анализатора.

Но разницу между белым и черным можно представить и как разницу между белой стеной, освещенной ярким солнцем, и темным проемом окна или арки на этой стене. В этом случае коэффициенты отражения (альбедо) поверхностей равны, а контраст создается за счет разной освещенности (илл.27,цв.).

И мы опять увидим белое и черное, если разница в освещенности будет равной 1:40–1:60. Черное отстоит от белого всегда на определенную величину, которая выражается диапазоном яркостей, равным 1:40 или 1:60. От того, где вы читаете эту книгу – на ярком солнце или на эскалаторе в метро, – контраст между белой страницей и черным шрифтом на этой странице для вас не меняется, черное остается черным, а белое – белым. Меняется лишь чувствительность зрительного анализатора, который каждый раз адаптируется, приспосабливаясь к данным условиям освещения.

 

Оптимальный визуальный контраст (ОВК)

 

Представим себе черный костюм, освещенный солнцем, и белую рубашку, освещенную луной. Если измерить их яркости прибором, то окажется, что в этих условиях черный костюм во много раз ярче, чем белая рубашка, и, тем не менее, мы знаем, что костюм черный, а рубашка – белая, потому что видели это, когда они были освещены вместе сначала солнцем, а потом луной. В природе, в действительности, вообще нет ни белого, ни черного, а есть только длинный ряд поверхностей с разными коэффициентами отражения и большой диапазон освещенностей (от яркого солнца до слабого света звезд на ночном небе). Сочетаясь между собою самым причудливым образом, эти факторы суммируются и образуют очень широкий ряд или интервал яркостей. Но наш зрительный анализатор способен видеть в этом гигантском ряду только небольшой отрезок с интервалом примерно 1:40 – 1:60, который замыкается для нас с одной стороны белым, а с другой – черным.

Эта особенность зрительного анализатора человека играет огромную роль в изобразительном искусстве, и выбор живописцами белил и сажи, а полиграфистами и граверами – белой бумаги и черной краски, совсем не случаен. Чисто эмпирически ими был найден такой интервал яркостей, который соответствовал критерию полноты и достаточности при восприятии контраста.

Учитывая особое значение этой величины, я предлагаю назвать ее оптимальным визуальным контрастом (сокращенно ОВК) и считать равной примерно 1:40. При этом подразумевается, что белое должно восприниматься как белое с фактурой (без эффекта выбеливания), а черное – как черное с фактурой, а не так, как воспринимается бездонный провал или черный бархат. Имеется в виду, что оба участка должны быть в поле зрения одновременно. В процессе совершенствования и приспособления к условиям действительности наше зрение отработало именно этот интервал яркостей как наиболее целесообразный с точки зрения выживания и наилучшей различимости объектов окружающего мира.

Принято считать, что наш глаз адаптируется таким образом, что, улавливая в поле зрения самые яркие и самые темные участки объекта, затем как бы высчитывает среднее арифметическое из этого интервала яркостей и настраивается на этот средний по яркости участок, изменяя по нему чувствительность сетчатки и величину зрачка. Это не совсем так. По всей видимости, наш глаз адаптируется по самому яркому участку, это более целесообразно с точки зрения биологической защиты органа зрения от перегрузок. Таким образом как бы фиксируется белое. А черное автоматически и бессознательно «отсчитывается» от этого белого на величину, равную оптимальному визуальному контрасту, т.е. примерно 1:40.

Таким образом, независимо от условий освещения (кроме разве самых неблагоприятных) наш зрительный анализатор всегда адаптируется по самому светлому в зоне нашего внимания, причем таким образом, чтобы мы в этом светлом видели фактуру (детали). Затем, по мере убывания яркостей на разных участках объекта, мы еще продолжаем хорошо различать все детали, пока яркость следующих участков не уменьшится до такой степени, что по отношению к самому яркому не станет меньше примерно в 40 раз. Тогда все остальные участки, которые имеют яркость меньше этой величины (глубокие тени и т.п.), потеряют фактуру (детали) и будут смотреться черным провалом. Эта так называемая потеря деталей в глубоких тенях совсем не такая уж редкая вещь при визуальном восприятии. Но, конечно, акт зрения дискретен, изображение держится на сетчатке нашего глаза 1/20 сек., а затем в результате движения глаза меняется зона нашего внимания, мы начинаем «смотреть в тень», по выражению художников. В этой новой зоне тени находится свое самое светлое место, по которому мгновенно адаптируется глаз, а раз изменился уровень белого, то автоматически передвигается и уровень черного (при сохранении способности воспринимать яркостный интервал, равный ОВК). При этом мы начинаем прекрасно различать детали в глубокой тени.

Если вновь усилием воли перевести взгляд к первоначальной зоне внимания, то мы опять в глубокой тени не увидим никаких деталей, хотя за мгновение до этого мы их прекрасно различали. То же самое происходит в видеокамере, когда работает автомат экспозиции. Упрощенно этот процесс можно представить себе как перемещения интервала яркостей, ограниченного ОВК, по яркостному ряду (илл.28).

Таблицы, подобные таблице 1, приводятся в книгах для того, чтобы показать, что далеко не каждый объект может быть воспроизведен фотографической или телевизионной системой без того чтобы не утратить подробности в ярких светах или глубоких тенях. И это совершенно справедливо, поскольку широта этих систем имеет определенные границы. Однако одно из распространенных заблуждений заключается в предположении, что буквально все объекты, перечисленные в таблице (вплоть до самых контрастных), могут без труда восприниматься нашим зрением, а вот пленке и видеокамере это недоступно. Это верно лишь отчасти, потому что самые контрастные объекты воспринимаются нами лишь после целого ряда единичных актов зрения при разном уровне адаптации каждого единичного сетчаточного образа, где постоянно меняется чувствительность глаза и величина зрачка и где уровень белого (а, значит, и связанный с ним уровень черного) постоянно и автоматически меняется. В результате в нашем перцептивном представлении создается суммарный образ, суммарное суждение, которое включает, естественно, и знание о деталях как в самых светлых, так и в самых темных участках любого объекта. Но ведь такую же информацию можно получить и при помощи фотографической системы, если снимать не один кадр, а целую серию кадров, одни из которых будут экспонированы по светам, другие – по теням, а третьи – по средним зонам яркости в объекте! Это будет точная модель зрения, потому что зрение – это процесс, разворачивающийся во времени и обусловленный целым рядом постоянных и переменных величин.

Из практических наблюдений явствует, что за уровень белого наш глаз принимает не любое самое яркое пятно, а только такое, которое занимает на сетчатке определенную площадь. К сожалению, нет данных о том, как связывается яркость пятна с его угловыми размерами и что именно заставляет глаз менять адаптацию. Такие данные помогли бы конструкторам, которые увлекаются изобретением различных устройств для автоматического определения экспозиции.

Итак, визуальное ощущение белого и черного (при сохранении фактуры в том и в другом) связано с определенной величиной яркостного контраста, равной примерно 1:40, и не зависит от силы освещения.

Оптимальный визуальный контраст (ОВК) – это постоянная величина. Если бы это было не так, то, воспринимая объект, а затем его изображение и сравнивая их, мы не смогли бы оценить их подобие, поскольку имели бы разные физиологические критерии (мерки) для их оценки. ОВК – это своеобразный антропометрический модуль, по которому строится контраст любого произведения изобразительного искусства (живопись, графика, фотография, кино и телевидение). Этот модуль входит составной частью в любое тональное решение, подобно тому, как рост человека является антропометрическим модулем в искусстве архитектуры. Ведь нет ни одного архитектурного сооружения, которое тем или иным образом не соотносилось бы с величиной человеческой фигуры; пропорции окон, дверей, мебели и всего прочего связаны с ростом человека, и в этом смысле человеческая фигура служит модулем, основной меркой, которую обязательно учитывают. Точно так же контраст любого произведения изобразительного искусства должен быть соотнесен с величиной оптимального визуального контраста, любое тональное решение обязано учитывать эту величину как модуль, заложенный в нашем визуальном восприятии. Это еще одно проявление фундаментального закона константности при визуальном восприятии.

Несоответствие контраста величине ОВК можно рассматривать как мощное выразительное средство (выбеливание до потери фактуры или сознательные провалы в глубоких тенях). Это выразительное средство много веков успешно используется в живописи и графике, а последние несколько десятков лет в фотографии и кино. Этот прием не следует воспринимать как техническую небрежность или случайность.

С другой стороны, в нарочито мягком, так называемом пастельном изображении, в котором нарушены привычные тональные соотношения (обычно они заменены соотношениями цветов), точно так же сознательно используется этот прием несоответствия контраста величине ОВК для большей выразительности, т.е. передачи определенного эмоционального состояния.

Если предположить, что широта сквозного фотографического процесса равна величине оптимального визуального контраста (а, это, по‑видимому, то самое, к чему надо стремиться), то для сквозного процесса безразлично, образовано ли черное в кадре глубокой тенью или непроницаемой черной заплаткой на белой фактуре, чего нельзя сказать о нашем зрительном анализаторе. Мы довольно легко отличаем участки черной поверхности от глубокой тени, особенно если хорошенько всмотримся, т.е. получим целую серию сетчаточных образов при разном уровне адаптации. Особенно это относится к знакомым объектам.

А вот когда американские астронавты впервые облетали Луну на расстоянии трех километров от ее поверхности, они, несмотря на то, что видимость была прекрасная, не могли определить высоту горных хребтов и глубину впадин, потому что контраст наблюдаемых объектов (контраст светотени) из‑за отсутствия атмосферы намного превышал величину оптимального визуального контраста.

 




Поделиться с друзьями:


Дата добавления: 2014-11-25; Просмотров: 537; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.