Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физические основы процессов преобразования солнечной энергии




Тепловое аккумулирование энергии.

Системы солнечного теплоснабжения.

Преобразование солнечной энергии в электрическую.

Тема 3. СОЛНЕЧНАЯ ЭНЕРГЕТИКА

Содержательный модуль 2. ОСНОВНЫЕ ИСТОЧНИКИ АЛЬТЕРНАТИВНОЙ ЭНЕРГИИ

Интенсивность солнечного излучения. Фотоэлектрические свойства p-n перехода.

Вольт-амперная характеристика солнечного элемента.

Конструкции и материалы солнечных элементов.

Классификация и основные элементы гелиосистем.

Концентрирующие гелиоприемники.

Плоские солнечные коллекторы.

Энергетический баланс теплового аккумулятора.

Классификация аккумуляторов тепла.

Системы аккумулирования.

Тепловое аккумулирование для солнечного обогрева и охлаждения помещений.

 

Интенсивность солнечного излучения

Источником энергии солнечного излучения служит термоядерная реакция на Солнце. Основная часть этой энергии испускается в виде электромагнитного излучения в диапазоне длин волн λ = 0,2…3 мкм. При прохождении через атмосферу солнечный свет ослабляется, в основном за счет поглощения инфракрасного излучения парами воды, ультрафиолетового излучения – озоном и рассеяния излучения молекулами газов и находящимися в воздухе частицами пыли и аэрозолями. Параметром, отражающим влияние атмосферы на интенсивность и спектральный состав солнечного излучения, доходящего до земной поверхности, является атмосферная (или воздушная) масса (АМ).

При нулевой воздушной массе АМ0 у верхней границы атмосферы интенсивность излучения равна EC =1360 Вт/м2. Величина АМ1 соответствует прохождению солнечного излучения через безоблачную атмосферу до уровня моря при зенитальном расположении Солнца. Воздушная масса для любого уровня земной поверхности в любой момент дня определяется по формуле

 

(3.1)

 

где x – атмосферное давление, Па;

x 0 – нормальное атмосферное давление (1,013·105 Па);

θ – угол высоты Солнца над горизонтом.

 

Наиболее характерной в земных условиях является величина АМ1,5 (θ = 41o49′). Она принята за стандартную при интегральной поверхностной плотности солнечного излучения EC =835 Вт/м2. Это необходимо для обеспечения сравнения результатов исследований различных солнечных элементов. На рис. 3.1 приведено спектральное распределение потока фотонов внеатмосферного (АМ0) и наземного стандартизованного (АМ1,5) солнечного излучения при перпендикулярном падении лучей на приемную площадку.

 

 

Рис. 3.1. Спектральное распределение потока фотонов солнечного излучения: 1– внеатмосферное излучение (АМ0); 2 – наземное стандартизованное излучение (АМ1,5); 3 – спектр излучения абсолютно черного тела при TC = 5800 К. На вставке заштрихована доля полезно используемых фотонов.

 

Энергия фотонов, эВ, в излучении с длиной волны λ определяется из соотношения

(3.2)

где h – постоянная Планка, 6,626196(50)·10-34 Дж·с;

c – скорость света, 2,9979250(10)·108 м/с;

λ – длина волны, мкм.

 

Электронвольт – работа, которую необходимо совершить, чтобы переместить электрон между двумя точками с разностью потенциалов 1 В. 1эВ = 1,6·10-19 Дж.

Граничная длина волны, начиная с которой фотоны будут поглощаться в материале солнечного элемента с шириной запрещенной зоны (характеризуется отсутствием энергетических уровней, различна по ширине для разных материалов) Eg

 

(3.3)

 

Более длинноволновое излучение не поглощается в полупроводнике и, следовательно, бесполезно с точки зрения фотоэлектрического преобразования.

 

Фотоэлектрические свойства p–n перехода

Солнечный фотоэлемент изготавливается на основе пластины, выполненной из полупроводникового материала, например кремния (рис. 3.2.). В пластине создаются области с p- и n- типами проводимости. Получают различные типы проводимости путем изменения типа введенных в полупроводник примесей. Например, атомы III группы Периодической системы Д.И. Менделеева, введенные в кристаллическую решетку кремния, придают последнему дырочную (положительную) проводимость, а примеси V группы – электронную (отрицательную).

 

 

Рис. 3.2. Конструкция простейшего солнечного элемента

Затем изготавливаются нижний и верхний электроконтакты, причем нижний контакт – сплошной, а верхний выполняется в виде гребенчатой структуры (тонкие полосы, соединенные относительно широкой шиной). Контакт p - или n-полупроводников приводит к образованию между ними контактного электрического поля, играющего важную роль в работе солнечного фотоэлемента.

Конструкции и материалы солнечных элементов

Производство структур на основе монокристаллического кремния – процесс технологически сложный и дорогостоящий. Поэтому внимание было обращено на такие материалы, как сплавы на основе аморфного кремния (a-Si:H), арсенид галлия и поликристаллические полупроводники.

Аморфный кремний выступил в качестве более дешевой альтернативы монокристаллическому. Первые СЭ на его основе были созданы в 1975 году. Оптическое поглощение аморфного кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки а-Si:Н толщиной 0,5–1,0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. Кроме того, благодаря существующим технологиям получения тонких пленок аморфного кремния большой площади не требуется операции резки, шлифовки и полировки, необходимых для СЭ на основе монокристаллического кремния. По сравнению с поликристаллическими кремниевыми элементами изделия на основе a-Si:Н производят при более низких температурах (300°С): можно использовать дешевые стеклянные подложки, что сократит расход кремния в 20 раз.

Пока максимальный КПД экспериментальных элементов на основе а-Si:Н – 12% – несколько ниже КПД кристаллических кремниевых СЭ (~15%). Однако не исключено, что с развитием технологии КПД элементов на основе а-Si:Н достигнет теоретического потолка – 16 %.

Арсенид галлия –один из наиболее перспективных материалов длясоздания высокоэффективных солнечных батарей. Это объясняется следующими его особенностями:

- почти идеальная для однопереходных солнечных элементов ширина запрещенной зоны 1,43 эВ;

- повышенная способность к поглощению солнечного излучения: требуется слой толщиной всего в несколько микрон;

- высокая радиационная стойкость, что совместно с высокой эффективностью делает этот материал чрезвычайно привлекательным для использования в космических аппаратах;

- относительная нечувствительность к нагреву батарей на основе GaAs;

- характеристики сплавов GaAs с алюминием, мышьяком, фосфором или индием дополняют характеристики GaAs, что расширяет возможности при проектировании солнечных элементов.

Главное достоинство арсенида галлия и сплавов на его основе – широкий диапазон возможностей для дизайна СЭ. Фотоэлемент на основе GaAs может состоять из нескольких слоев различного состава. Это позволяет разработчику с большой точностью управлять генерацией носителей заряда, что в кремниевых солнечных элементах ограничено допустимым уровнем легирования. Типичный солнечный элемент на основе GaAs состоит из очень тонкого слоя AlGaAs в качестве окна.

Основной недостаток арсенида галлия – высокая стоимость. Для удешевления производства предлагается формировать СЭ на более дешевых подложках; выращивать слои GaAs на удаляемых подложках или подложках многократного использования.

Поликристаллические тонкие пленки также весьма перспективныдля солнечной энергетики. Чрезвычайно высока способность к поглощению солнечного излучения у диселенида меди и индия (CuInSe2) – 99 % света поглощается в первом микроне этого материала (ширина запрещенной зоны – 1,0 эВ) [2,5]. Наиболее распространенным материалом для изготовления окна солнечной батареи на основе CuInSe2 является CdS. Иногда для улучшения прозрачности окна в сульфид кадмия добавляют цинк. Немного галлия в слое CuInSe2 увеличивает ширину запрещенной зоны, что приводит к росту напряжения холостого хода и, следовательно, повышению эффективности устройства. Один из основных способов получения CuInSe2 – электрохимическое осаждение из растворов CuSO4, In2(SO4)3 и SeO2 в деионизованной воде при соотношении компонентов Cu:In:Se как 1:5:3 и pH>>1,2–2,0.

Теллурид кадмия (CdTe) –еще один перспективный материал для фотовольтаики. У него почти идеальная ширина запрещенной зоны (1,44 эВ) и очень высокая способность к поглощению излучения. Пленки CdTe достаточно дешевы в изготовлении. Кроме того, технологически несложно получать разнообразные сплавы CdTe c Zn, Hg и другими элементами для создания слоев с заданными свойствами.

Подобно CuInSe2, наилучшие элементы на основе CdTe включают гетеропереход с CdS в качестве оконного слоя. Оксид олова используется как прозрачный контакт и просветляющее покрытие. Серьезная проблема на пути применения CdTe – высокое сопротивление слоя p-CdTe, что приводит к большим внутренним потерям. Но она решена в p-i-n-структуре с гетеропереходом CdTe/ZnTe. Пленки CdTe обладают высокой подвижностью носителей заряда, а солнечные элементы на их основе – высокими значениями КПД, от 10 до 16%.

Среди солнечных элементов особое место занимают батареи, использующие органические материалы. Коэффициент полезного действия солнечных элементов на основе диоксида титана, покрытого органическим красителем, весьма высок – ~11 %. Основа солнечны элементов данного типа – широкозонный полупроводник, обычно TiO2, покрытый монослоем органического красителя. Принцип работы элемента основан на фотовозбуждении красителя и быстрой инжекции электрона в зону проводимости TiO2. При этом молекула красителя окисляется, через элемент идет электрический ток и на платиновом электроде происходит восстановление трииодида до иодида. Затем иодид проходит через электролит к фотоэлектроду, где восстанавливает окисленный краситель.




Поделиться с друзьями:


Дата добавления: 2014-11-08; Просмотров: 2872; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.