КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы описания движения жидкости
КИНЕМАТИКА ЖИДКОСТИ Кинематика жидкости - раздел механики жидкости, в котором изучаются движение жидкости и его характеристики, но не рассматриваются силы, под действием которых осуществляется это движение. В кинематике устанавливаются закономерности между координатами жидких частиц, их скоростями, ускорениями и другими параметрами, и изменениями этих параметров во времени. Механическое состояние движущейся жидкости в любой точке внутри ее характеризуется двумя величинами: скоростью движения частиц жидкости и гидродинамическим давлением. Представление о жидкости как о сплошной среде позволяет считать эти параметры непрерывными и дифференцируемыми функциями координат и времени. Существуют два способа описания движения жидкости: 1.Способ Лагранжа, который заключается в задании текущих значений координат каждой рассматриваемой материальной точки как функции времени. Способ Лагранжа теоретически применим к описанию движения жидкости, если рассматривать это движение, как непрерывный поток частиц жидкости, составляющих сплошную среду. Движение жидкости определено, если для каждой частицы жидкости можно указать координаты , как функции начального положения и времени . Кинематические уравнения движения записываются при этом в виде функциональной зависимости: (4.1) Переменные называют переменными Лагранжа Несмотря на полную информацию о движении массы жидкости, которую дает метод Лагранжа, он не получил широкого применения в механике жидкости. Это связано с тем, что уравнения движения, составляемые на основе метода Лагранжа сложны и трудноразрешимы. По этой причине наиболее широкое применение в механике жидкостей находит метод Эйлера. 2. Способ Эйлера основан на том, что совокупность мгновенных местных скоростей во всей области пространства, занятого движущейся жидкостью представляет собой векторное поле, называемое полем скоростей. В поле скоростей выбирают фиксированную точку, в которой отслеживают изменения скоростей с течением времени. Переменные называют переменными Эйлера Векторное поле скоростей может быть выражено и через проекции скоростей на соответствующие координатные оси в виде: (4.2) Так как состояние движущейся жидкости в каждой точке пространства определяется мгновенной локальной скоростью и значением гидродинамического давления, то описание движения жидкости сводится к определению поля скоростей и поля давлений во всем объеме, занимаемом движущейся жидкостью.
Полный дифференциал скорости будет равен:
Разделим данное уравнение на
Запишем уравнение на три координатные плоскости:
(4.3)
где левые части – полные производные ускорения в данных точках; первые слагаемые правых частей – частные производные по времени -представляют собой проекции локального (местного) ускорения в точке; выделенные фигурной скобкой – конвективные производные; выделенные по диагонали – прямые конвективные производные. Важнейшей кинематической характеристикой, необходимой для составления динамических уравнений движения жидкости является ускорение. В соответствии с физическим смыслом ускорение материальной точки или отдельной частицы жидкости определеяется полной производной вектора скорости по времени: Местная производная указывает на стационарность (нестационарность) процесса. Или на установившееся и неустановившееся движения жидкости. Установившимся (стационарным) называют движение, при котором основные параметры потока (скорость, давление, плотность) в данной точке пространства не изменяются с течением времени. Например, если скорость остается постоянной во времени, то или . Конвективная производная показывает однородность (равномерность) поля скоростей. Равномерным называется такое установившееся движение, при котором живые сечения вдоль потока не изменяются: в этом случае ; средние скорости по длине потока также не изменяются, т.е. . Примером равномерного движения является: движение жидкости в цилиндрической трубе, в канале постоянного сечения при одинаковых глубинах. Установившееся движение называется неравномерным, когда распределение скоростей в различных поперечных сечениях неодинаково; при этом средняя скорость и площадь поперечного сечения потока могут быть и постоянными вдоль потока. Примером неравномерного движения может быть движение жидкости в конической трубе или в речном русле переменной ширины. Напорным называется движение жидкости, при котором поток полностью заключен в твердые стенки и не имеет свободной поверхности. Напорное движение происходит вследствие разности давлений и под действием силы тяжести. Примером напорного движения является движение жидкости в замкнутых трубопроводах (например, в водопроводных трубах). Безнапорным называется движение жидкости, при котором поток имеет свободную поверхность. Примером безнапорного движения может быть: движение жидкости в реках, каналах, канализационных и дренажных трубах. Безнапорное движение происходит под действием силы тяжести и за счет начальной скорости. Обычно на поверхности безнапорного потока давление атмосферное. Если уровень жидкости в резервуаре поддерживать все время постоянным , путем непрерывного подвода жидкости в сосуд из крана, то форма струи, дальность ее полета и расход жидкости через отверстие будут постоянными. Этот случай является иллюстрацией установившегося движения жидкости. Примером неустановившегося движения является истечение жидкости из отверстия в резервуаре. По мере понижения уровня жидкости в сосуде с течением времени (моменты времени ) уменьшается дальность полета струи и расход вытекающей жидкости.
Дата добавления: 2014-11-16; Просмотров: 1433; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |