КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Cписок производных простейших элементарных функций
Производная и ее применения Производная и интеграл Пусть функция у=f(х) определена в точках х и х1. Разность х1 - х называется приращением аргумента, а разность f(х1) - f(х) - приращением функции при переходе от значения аргумента х к значению аргумента х1. Приращение аргумента обозначают , приращение функции обозначают или . Если существует предел отношения приращения функции к приращению аргумента при условии, что , то функция у=f(х) называется дифференцируемой в точке х, а этот предел называется значением производной функции у=f(х) в точке х и обозначается или . Операцию отыскания производной называют дифференцированием.
1. 2. , а – любое число 3. , в частности 4. , в частности, при : 5. 6. 7. 8. 9. 10. 11. 12.
Если функции и дифференцируемы в точке х, то: - Их сумма дифференцируема в точке х и (теорема о дифференцировании суммы); - Произведение функций и дифференцируемо в точке х и (теорема о дифференцировании произведения); - Частное функций и дифференцируемо в точке х, если , и (теорема о дифференцировании частного).
Дата добавления: 2014-11-16; Просмотров: 682; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |