КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Итак, с повышением прочности комплекса повышается специфичность его биологического действия
БИОКОМПЛЕКСНЫЕ СОЕДИНЕНИЯ. ФЕРМЕНТЫ. ФУНКЦИИ ИОНОВ МЕТАЛЛОВ В ФЕРМЕНТАХ. МЕТАЛЛОЛИГАНДНЫЙ ГОМЕОСТАЗ. ФЕРМЕНТАТИВНОЕ ДЕЙСТВИЕ КОМПЛЕКСОНАТОВ ПЕРЕХОДНЫХ ЭЛЕМЕНТОВ. Железо-, кобальт-, медь-, цинксодержащие биокомплексные соединения. Понятие о металлокомплексном гомеостазе. Биокомплексные соединения значительно различаются по устойчивости. Одни из них настолько прочны, что постоянно находятся в организме и выполняют определенную функцию. Роль металла в таких комплексах высокоспецифична: замена его даже на близкий по свойствам элемент приводит к значительной или полной утрате физиологической активности. Примерами таких соединений являются гемоглобин, витамины В12, хлорофилл и некоторые металлоферменты, например, цитохромы. В организме присутствуют и менее прочные комплексы, которые образуются только для выполнения определенных функций, после чего распадаются: например, образование между ионом металла и ферментом комплексного соединения на период осуществления катализа. Большинство таких ферментов обладают каталитической активностью, но без иона металла она будет ниже. Ионы металлов выполняют функцию активаторов. Специфичность металлов в этих комплексах не выражена. Он может быть заменен на другой металл без потери физиологической активности. К биологическим соединениям с невысокими значениями констант устойчивости можно отнести соединения, которые стабилизируют сложные структуры. Например, образование металлополинуклеотидных комплексов стабилизирует двойную спираль ДНК. Комплексы с ДНК (в основном с донорным атомом кислорода, фосфатных групп, частично с донорными атомами азота оснований) образуют двухзарядные ионы марганца, кобальта, железа и никеля. Они взаимозаменяемы. Промежуточное положение между этими двумя группами биокомплексов занимают диссоциирующие металлоферменты. Ионы металлов в этих комплексах выполняют функции кофактора. Например, карбоксипептидаза в отсутствии иона металла неактивна. Максимальная активность в присутствии иона цинка. В живых организмах действует большое число ферментов, в состав которых входят ионы металлов, выполняющие следующие функции: 1) они являются электрофильной группой активного центра фермента и облегчают взаимодействие с отрицательно заряженными участками молекул субстрата, 2) ион металла формирует каталитически активную конформацию структуры фермента, 3) в ряде случаев ионы металла, которые могут находиться в переменных степенях окисления, участвует в транспорте электронов (многоядерные комплексы). Концентрации ионов d–элементов в организме поддерживаются постоянными за счет существования механизма металлолигандного гомеостаза, основными звеньями которого являются: всасывание, распределение, транспорт, депонирование и элиминация. Параметры всасывания и элиминации в норме сбалансированы, т.е. при уменьшении поступления в организм того или иного микроэлемента уменьшается его выведение и наоборот. Для поддержания постоянной концентрации ионов металлов в организме существуют депонированные и транспортные формы. Например, железо в организме млекопитающих депонируется в составе ферритина – водораствори мого белка,в котором находится мицеллярное ядро неорганического соединения железа (III). В депонированной форме находится около 25% железа. Регуляция металлолигандного гомеостаза осуществляется с помощью нервной, эндокринной и иммунной систем. Комплексонаты переходных металлов обеспечивают сбалансированность минерального питания, активизируют метаболические процессы, интенсифицируют рост и развитие организма. Наибольшую близость в биологическом действии (процессах иммуногенеза, кроветворения, стимулирующем эффекте) показали комплексонаты, образованные ионами металлов в степени окисления +2, сходные по электронной структуре атомы. Это обусловливает неспецифич ность в их биологическом действии поддерживается и активно проявляется в присутствии полидентатных лигандов – комплексонов. Комплексонаты, образованные ионом металла с более высокой степенью окисления, малым размером иона, более высоким сродством к электрону, обладают наиболее высоким стимулирующим эффектом. Для ионов переходных металлов в биологическом действии их комплексонатов характерно больше горизонтальное сходство, чем вертикальное в периодической системе Д.И.Менделеева в ряду Ti – Zn. По интенсивности их стимулирую щего действия на организм их можно расположить в следующий ряд: Ti 4+ > Fe3+ > Cu2+ > Fe 2+
Дата добавления: 2014-11-16; Просмотров: 695; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |