Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Предсказание финансовых временных рядов




Предсказание финансовых временных рядов - необходимый элемент любой инвестиционной деятельности. Сама идея инвестиций заключается во вложении денег сейчас с целью получения дохода в будущем и основывается на идее прогнозирования будущего. Соответственно, предсказание финансовых временных рядов лежит в основе деятельности всей индустрии инвестиций - всех бирж и небиржевых систем торговли ценными бумагами.

Для предсказания финансовых временных рядов в последнее десятилетие активно используются:

· технический анализ, сосредоточенный на индивидуальном поведении данного финансового инструмента, вне его связи с остальными ценными бумагами,

· метод на основе нейронных сетей, обладающий рядом неоспоримых достоинств.

Во-первых, нейросетевой анализ, в отличие от технического, не предполагает никаких ограничений на характер входной информации. Это могут быть как индикаторы данного временного ряда, так и сведения о поведении других рыночных инструментов. Поэтому нейросети активно используют именно институциональные инвесторы (например, крупные пенсионные фонды), работающие с большими портфелями, для которых особенно важны корреляции между различными рынками.

Во-вторых, в отличие от технического анализа, основанного на общих рекомендациях, нейросети способны находить оптимальные для данного инструмента индикаторы и строить по ним оптимальную для данного ряда стратегию предсказания. Более того, эти стратегии могут быть адаптивны, меняясь вместе с рынком, что особенно важно для молодых активно развивающихся рынков, в частности, российского.

Общая схема нейросетевого предсказания временных рядов показана рисунке 23.

Метод погружения позволяет количественно измерить предсказуемость реальных финансовых инструментов, т.е. проверить или опровергнуть гипотезу эффективности рынка.

Одним из самых слабых мест в финансовых предсказаниях является дефицит примеров для обучения нейросети. Финансовые рынки, вообще и особенно российские, не стационарны. Появляются новые финансовые инструменты, для которых еще не накоплена история, изменяется характер торговли на прежних рынках. В этих условиях длина доступных для обучения нейросети временных рядов весьма ограничена.

 

Рис. 23. Схема технологического цикла предсказаний рыночных временных рядов

В простейшем случае ежедневной торговли прибыль зависит от верно угаданного знака изменения котировки. Поэтому нейросеть следует ориентировать именно на точность угадывания знака, а не самого значения.

Автоматические нейросетевые трейдеры оказываются наиболее эффективны при торговле в реальном времени, где наиболее заметны такие их преимущества над обычными брокерам, как: неутомляемость, неподверженность эмоциям, потенциально гораздо более высокая скорость реагирования. Обученная нейросеть, подсоединенная к электронной системе торгов, может принимать решения еще до того, как брокер-человек успеет распознать изменения графика котировок на своем терминале.




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 553; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.