Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основное уравнение динамики при поступательном движении тела




Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой.

Основы динамики системы материальных точек

 

 

Любое материальное тело в механике рассматривается как меха­ническая система, образуемая совокупностью материальных точек.

Из определения механической системы следует, что движение каждой из точек, входящих в систему, зависит от движения осталь­ныхточек.

Силы, действующие на точки системы, делятся на

· внешние и

· внутренние.

Силы взаимодействия между точками этой системы называют внутренними.

К внешним силам относятся силы, действу­ющие со стороны точек, не входящих в эту систему.

Примерами внешних сил являются сила тяжести, сила давления, сила трения и др.

К внутренним силам относятся силы упругости.

Движение механической системы зависит не только от внешних сил, но и от суммарной массы системы

масса отдельных точек механической системы.

Движение системы зависит и от положения центра масс систе­мы — условной точки, в которой сосредоточена вся масса тела. Обыч­но считают, что в центре масс приложены все внешние силы.

Движение центра масс определяет движение всей системы толь­ко при поступательном движении, при котором все точки тела дви­жутся одинаково.

 

Для определения движения тела (системы материальных точек) можно использовать второй закон динамики

где т — суммарная масса тела; ас — ускорение центра масс тела.

В поле земного притяжения центр масс совпадает с центром тяжести.

 

Основное уравнение динамики вращающегося тела

Пусть твердое тело под действием внешних сил вращается во­круг оси Oz с угловой скоростью ω (рис. 17.3).

Рассматривая твердое тело как механическую систему, разобьем ее на множество материальных точек с массами Δmk. Каждая точ­ка движется по окружности радиуса rk c касательным ускорением аkt = εrk и нормальным ускорением

где ε — угловое уско­рение.

Используем для каждой точки принцип Даламбера и приложим силы инерции:

Система сил, действующих на точку, по принципу Даламбера, находится в равновесии.

Поэтому алгебраическая сумма моментов относительно оси вра­щения должна быть равна нулю:

где Mz — момент внешних сил.

Моменты нормальных сил инерции Fинkn равны нулю, т. к. силы пересекают ось z. Силы, направленные по касательной к окружно­сти, равны

где ε — общая величина, угловое ускорение тела.

Подставив значение силы в формулу для определения моментов, получим

Величина

называется моментом инерции тела относи­тельно оси вращения и обозначается

В результате получим выраже­ние основного уравнения динамики вращающего тела:

где Mz — сумма моментов внешних сил относительно оси; ε — угло­вое ускорение тела.

 

Момент инерции тела в этом выражении определяет меру инертности тела при вращении.

По выражению для момента инерции можно определить, что единица измерения этой величины в системе СИ [Jz\ = [тг2] = кг-м2.

Видно, что значение момента инерции зависит от распределе­ния массы относительно оси вращения: при одинаковой массе момент инерции больше, если основная часть массы расположена дальше от оси вращения. Для увеличения момента инерции используют колеса со спицами и отверстиями.




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 895; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.