Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Законы де Моргана




МОДУС ТОЛЛЕНДО ПОНЕНС

МОДУС ПОНЕНДО ТОЛЛЕНС

 

Этим именем средневековые логики обозначали следующие схемы рассуждения:

Либо А, либо В; А Либо А, либо В;В

Неверно В Неверно А

 

 

Другая запись:

Либо А, либо В. А. Следовательно, не-В.

Либо А, либо В. В. Следовательно, не-А

 

Посредством этих схем от утверждения двух взаимоисключающих альтернатив и установления того, какая из них имеет место, осуществляется переход к отрицанию второй альтернативы:

либо первое, либо второе, но не оба вместе; есть первое; значит, нет второго. Например:

 

Достоевский родился либо в Москве, либо в Петербурге.

Он родился в Москве

Неверно, что Достоевский родился в Петербурге.

 

Дизъюнкция, входящая в данную схему, является исключающей, она означает: истинно первое или истинно второе, но не оба вместе. Такое же рассуждение, но с неисключающей дизъюнкцией (первое или второе, но возможно, что и первое, и второе), логически неправильно. От истинных посылок оно может вести к ложному заключению:

 

На Южном полюсе был Амундсен или был Скотт.

На Южном полюсе был Амундсен.

Неверно, что там был Скотт.

 

Обе посылки истинны: и Амундсен, и Скотт достигли Южного полюса, заключение же ложно, Правильным является умозаключение:

 

На Южном полюсе первым был Амундсен или Скотт.

На этом полюсе первым был Амундсен.

Неверно, что там первым был Скотт.

 

Этим термином средневековые логики обозначали разделитель-но-категорическое умозаключение: первое или второе; не первое; значит, второе. Первая посылка умозаключения - разделительное (дизъюнктивное) высказывание, вторая - категорическое высказывание, отрицающее один из членов дизъюнкции; заключением является другой ее член:

А или В; неверно А

В

Или:

А или В; неверно В

А

Другая форма записи:

А или В. Не-А. Следовательно, В.

А или В. Не-В. Следовательно, А.

 

Например:

 

Множество является конечным или оно бесконечно.

Множество не является конечным.

Множество бесконечно.

 

Иногда эту схему рассуждения именуют дизъюнктивным силлогизмом.

С использованием логической символики умозаключение формулируется так:

A v В, ~ А

В

Или:

А v В, ~ В

А

В современной логике модус толлендо поненс называется также правилом удаления дизъюнкции. Ему соответствует логический закон:

v В) & ~ А ® В,

если А или В и ~ А, то В.

 

Широкое применение находят законы, названные именем американского логика А. де Моргана и позволяющие переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот:

~ (А & В) ® (~ А v ~ В),

если неверно, что есть и первое, и второе, то неверно, что есть первое, или неверно, что есть второе;

(~ А v ~ В) ® ~(А & В),

если неверно, что есть первое, или неверно, что есть второе, то неверно, что есть первое и второе. Используя эти законы, от высказывания «Неверно, что изучение логики и трудно, и бесполезно» можно перейти к высказыванию «Изучение логики не является трудным, или же оно не бесполезно». Объединение этих двух законов дает закон («- эквивалентность, «если и только если»):

 

~ (А & В) «( ~ A v ~ В).

 

Словами обычного языка этот закон можно выразить так: отрицание конъюнкции эквивалентно дизъюнкции отрицаний. Например: «Неверно, что завтра будет холодно и завтра будет дождливо, тогда и только тогда, когда завтра не будет холодно или завтра не будет дождливо».

Еще один закон де Моргана утверждает, что отрицание дизъюнкции эквивалентно конъюнкции отрицаний:

 

~ (А v В) «(~ А & ~ В),

 

неверно, что есть первое или есть второе, если и только если неверно, что есть первое, и неверно, что есть второе. Например:

«Неверно, что ученик знает арифметику или знает геометрию, тогда и только тогда, когда он не знает ни арифметики, ни геометрии». На основе законов де Моргана связку «и» можно определить, используя отрицание, через «или», и наоборот:

- «А и В» означает «неверно, что не-А или не-В»,

- «А или В» означает «неверно, что не-А и не-В».

 

К примеру: «Идет дождь и идет снег» означает «Неверно, что нет дождя или нет снега»; «Сегодня холодно или сыро» означает «Неверно, что сегодня не холодно и не сыро».




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 1258; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.