КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Комплементарный выходной каскад УМ
Схема комплементарного эмиттерного повторителя, работающего в режиме В, приведена на рисунке 3.11. Рисунок 3.11 - Комплементарный эмиттерный повторитель Его основные характеристики следующие: - коэффициент усиления по напряжению ; - коэффициент усиления по току (коэффициенту усиления по току транзистора); - максимальная синусоидальная выходная мощность ; - коэффициент полезного действия при максимальной мощности 78,5%; - максимальная мощность, рассеиваемая на одном транзисторе . При положительных входных сигналах транзистор Т1 работает как эмиттерный повторитель, а транзистор Т2 заперт. При отрицательных входных напряжениях - наоборот. Таким образом, транзисторы работают попеременно, каждый в течение одного полупериода входного напряжения. Такой режим работы схемы называется двухтактным режимом В. При оба транзистора заперты; следовательно, схема имеет малый ток покоя. Ток, потребляемый как от положительного, так и от отрицательного источника напряжения, равен току в нагрузке. Поэтому схема обладает достаточно высоким коэффициентом полезного действия. Выходное напряжение на нагрузке может практически достигать , поскольку транзисторы не ограничивают выходной ток. Разность между входным и выходным напряжениями равна напряжению база-эмиттер открытого транзистора. При изменении нагрузки оно меняется незначительно. Следовательно, независимо от нагрузки. Мощность в нагрузке обратно пропорциональна сопротивлению и не имеет экстремума. Таким образом, в схеме не требуется согласования нагрузки, и максимальная мощность на выходе определяется лишь предельным током и максимальной мощностью рассеяния используемых транзисторов. На рисунке 3.12 показана переходная характеристика для двухтактного режима В, которая соответствует схеме, приведенной на рисунке 3.11, а.
а б Рисунок 3.12 – Переходные искажения в двухтактном режиме: а – искажения в режиме В; б – искажения в режиме АВ Вблизи нуля ток в открытом транзисторе очень мал, а внутреннее сопротивление - большое. В результате прирост напряжения на нагрузке в этой области оказывается меньше, чем изменение входного сигнала. Это и является причиной появления излома характеристики вблизи нуля. Возникающие при этом искажения выходного напряжения называют переходными искажениями. Большая величина этих искажений является недостатком режима В. При задании небольшого тока покоя транзисторов их внутреннее сопротивление уменьшается, а переходная характеристика изменяется и принимает вид, показанный на рисунке 3.12, б. Такой режим работы усилителей называется двухтактным режимом АВ. Видно, что при этом переходные искажения существенно уменьшаются. Пунктиром показаны переходные характеристики отдельных транзисторов повторителя. Если задать ток покоя равным максимальному току в нагрузке, то такой режим работы будет называться в данном случае двухтактным режимом А. Но данный режим крайне не экономичен, поэтому в современных усилителях мощности он не применяется. Однако переходные искажения в достаточной степени уменьшены, даже если ток покоя составляет незначительную часть максимального тока в нагрузке, как в режиме АВ. В этом режиме переходные искажения настолько малы, что с помощью обратной связи могут быть легко снижены до пренебрежимо малой величины. В данной схеме могут возникать также искажения, связанные с неодинаковым усилением отрицательных и положительных напряжений. Они возникают, когда транзисторы имеют различные коэффициенты передачи тока. Поэтому, если в схеме не предусмотрено глубокой отрицательной обратной связи, следует подбирать транзисторы с как можно более близкими коэффициентами передачи тока. На рисунке 3.13, а приведена принципиальная схема двухтактного каскада, реализующего режим АВ. Для обеспечения малого значения тока покоя следует приложить постоянное напряжение порядка 1,4 В между базовыми выводами транзисторов T1 и Т5. Если напряжения и равны, выходной потенциал покоя равен входному потенциалу покоя. Можно также начальное смещение задавать с помощью одного источника напряжения , как показано на рисунке 3.13, б. В этом случае возникает разность потенциалов на входе и выходе схемы, равная примерно 0,7 В. Основная проблема режима АВ состоит в необходимости поддержания неизменного тока покоя в широком диапазоне рабочих температур. При повышении температуры транзистора ток покоя увеличивается. Это приводит к дальнейшему росту температуры транзистора и в результате к его тепловому разрушению. Такой эффект называется термической положительной обратной связью. Для компенсации положительной связи при повышении температуры транзистора на 1° следует уменьшать напряжения и на 1 мВ. Для этого можно использовать диоды или термосопротивления, установленные на корпусе мощных транзисторов.
а б Рисунок 3.13 – Установка режима АВ; а – двумя источниками напряжения; б – одним источником напряжения Такая температурная компенсация, конечно, оказывается неполной, поскольку существует значительное различие в температурах перехода транзистора и его корпуса. Поэтому применяются дополнительные меры по стабилизации тока покоя. Для этой цели служат резисторы и (рисунок 3.13), реализующие отрицательную обратную связь по току. Эффективность данной обратной связи увеличивается с возрастанием величины сопротивлений этих резисторов. Однако, поскольку резисторы и включены последовательно с , то они снижают мощность, отдаваемую в нагрузку. По этой причине величина сопротивлений обратной связи должна выбираться малой по сравнению с сопротивлением нагрузки. Обычно резисторы и выбирают так, что падение напряжения на них при токе покоя не более 0,15 ÷ 0,25 В. Как будет показано далее, эта проблема может быть разрешена при использовании схемы Дарлингтона.
Дата добавления: 2014-11-18; Просмотров: 2369; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |