Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Деформации при чистом изгибе




Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.

ЛЕКЦИЯ 32

 

Знать распределение нормальных напряжений по сечению бал­ки при чистом изгибе, расчетные формулы и условия прочности.

Уметь выполнять проектировочные и проверочные расчеты на прочность, выбирать рациональные формы поперечных сечений.

При чистом изгибе в сечении возникает только один внутренний силовой фактор — изгибающий момент.

Рассмотрим деформацию бруса, нагруженного внешней парой сил с моментом т (рис. 32.1а).

При чистом изгибе выполняются гипотезы плоских сечений и ненадавливаемости слоев.

Сечения бруса, плоские и пер­пендикулярные продольной оси, после деформации остаются плоскими и пер­пендикулярными продольной оси.

Продольные волокна не давят друг на друга, поэтому слои испытывают простое растяжение или сжатие.

Действуют только нормальные на­пряжения.

Поперечные размеры сечений не меняются.

Продольная ось бруса после дефор­мации изгиба искривляется и образует дугу окружности радиуса ρ (рис. 32.1б). Материал подчиняется закону Гука.

Можно заметить, что слои, расположенные выше продольной оси, растянуты, расположенные ниже оси — сжаты (рис. 32.1 б). Так как деформации по высоте сечения меняются непрерывно, имеется слой, в котором нормальные напряжения σ равны нулю; такой слой называют нейтральным слоем (НС). Доказано, нейтральный слой проходит через центр тяжести сечения; ρ — радиус кривизны ней­трального слоя.

Рассмотрим деформа­цию слоя, расположенного на расстоянии у от ней­тральной оси (участок АВ, рис. 32.1).

Длина участка до дефор­мации равна длине нейтраль­ной оси:

Абсолютное удлинение слоя

(рис. 32.1 б).

Относительное удлинение

Относительное удлинение прямо пропорционально расстоянию слоя до нейтральной оси.

Используем закон Гука при растяжении: σ = Еε.

Получим зависимость нормального напряжения при изгибе от положения слоя:

Формула для расчета нормальных напряжений при изгибе

Рассмотрим изогнутый участок бруса dz (рис. 32.2).

d N элементарная продоль­ная сила в точке сечения;

dA — площадь элементарной площадки;

dm — элементарный момент, образованный силой относитель­но нейтрального слоя.

Суммарный изгибающий момент сил упругости в сечении

— осевой момент инерции сечения (лекция 25). Таким образом,

Откуда: Ранее получено

После ряда преобразований получим формулу для определения нормальных напряжений в любом слое поперечного сечения бруса:

где Jx — геометрическая характеристика сечения при изгибе.

Эпюра распределения нормальных напряжений при изгибе изоб­ражена на рис. 32.3.

По эпюре распределения нор­мальных напряжений видно, что максимальное напряжение возникает на поверхности.

Подставим в формулу напряжения значение у = ymax

 

Получим

 
 

Отношение принято обозначать

Эта величина называется моментом сопротивления сечения при изгибе, или осевым моментом сопротивления. Размерность — мм3.

Wx характеризует влияние формы и размеров сечения на проч­ность при изгибе. Напряжение на поверхности




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 1581; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.