КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Три проблемы коэффициента Шарпа
Хотя коэффициент Шарпа — полезный способ измерений, у него есть некоторое количество потенциальных недостатков** 1. Измерение прибыли в коэффициенте Шарпа. Это измерение — среднемесячная доходность (или доходность за другой интервал времени), выраженная в процентах годовых, — более приспособлено для оценки вероятной результативности в следующем месяце, чем для оценки результативности на протяжении всего года. Например, предположим, что управляющий в течение полугода получает 40% прибыли каждый месяц, а другие 6 месяцев приносят ему убытки в размере 30%. Вычисляя годовую прибыль, исходя из среднемесячной, мы получим 60% (12 х 5%). Однако если размер позиции корректируется в соответствии с существующими активами, а так поступает большинство управляющих, действительная прибыль за год составила бы -11%. Это произойдет, потому что из каждого доллара активов, имеющихся в начале периода, к концу периода осталось бы только $0,8858((1,40)6 х (0,70)6 = 0,8858). Как показывает этот пример, если вы озабочены оценкой потенциальной доходности за расширенный период, а не лишь за следующий месяц или другой интервал, то измерение прибыли, используемое в коэффициенте Шарпа, может вести к огромным искажениям. Однако эту проблему можно обойти, используя среднее геометрическое (в проти- * Здесь подразумевается, что торговые активы постоянны (прибыль изыма- ется, а убытки восполняются). Другими словами, отсутствует реинвестирование прибыли и снижение величины инвестиций в случае убытков. Вообще говоря, хотя вычисление прибыли с учетом реинвестиций предпочтительно, это обстоятельство более чем компенсируется существенным преимуществом, состоящем в отсутствии необходимости оценивать требования к минимальной величине активов в случае торговой системы. Более того, система с более высокой прибылью, рассчитанной без учета реинвестиций, чаше всего будет демонстрировать и более высокую прибыль с их учетом. ** Этот раздел адаптирован из статьи Дж. Швагера «Alternative to Sharpe Ratio Better Measure of Performance», Futures, p. 57-58, March 1985. ГЛАВА 21. измерение результативности торговли 739 воположность арифметическому) при расчете средней месячной доходности, которую затем выражают в процентах годовых, чтобы получить числитель коэффициента Шарпа. Средняя геометрическая доходность в процентах годовых в точности эквивалентна средней годовой доходности с учетом реинвестиций, которая обсуждается позже в этой главе в разделе, посвященном отношению прибыли к максимальному падению стоимости активов. 2. Коэффициент Шарпа не делает различий между коле- С точки зрения меры риска, используемой в коэффициенте Шарпа, т.е. стандартного отклонения доходности, колебания вверх и вниз рассматриваются как в равной степени плохие. Таким образом, коэффициент Шарпа показывал бы в невыгодном свете управляющего, у которого спорадически наблюдались бы резкие увеличения активов, даже если бы падения стоимости активов были малы. Рис. 21.3 сравнивает гипотетическое движение активов менеджера С, где время от времени наблюдается рост активов и отсутствует их падения, и менеджера D, который столкнулся с несколькими падениями стоимости активов. Хотя оба управляющих зафиксировали равную прибыль за период в целом, и менеджер D столкнулся с несколькими отрицательными переоценками, в то время как у менеджера С их не было, коэффициент Шарпа оценил бы менеджера D выше (см. таблицу). Такой исход — прямое следствие того факта, что коэффициент Шарпа оценивает верхнюю волатильность точно так же, как и нижнюю. 3. Коэффициент Шарпа не делает различий между череду- На рис. 21.4 показано гипотетическое изменение стоимости активов с начальной величиной $100 000, управляемых менеджером Е и менеджером F. Каждый из них в обшей сложности зарабатывает $48 000, или $24 000 в год. Однако у менеджера Е месячные доходы в $8000 чередуются с месячными потерями в размере $4000, в то время как менеджер F сразу теряет $48 000 в первые 12 месяцев и последовательно зарабатывает $96 000 в течение оставшегося периода. Коэффициент Шарпа этих двух управляющих был бы одним и тем же. Несмотря на этот факт, мало нашлось бы трейдеров, рассматривающих деятельность этих менеджеров как эквивалентную с точки зрения риска. Фактически все трейдеры согласились бы с тем, что результаты менеджера F подразумевают значительно более высокий уровень риска. Рисунок 21.3.
Дата добавления: 2014-11-18; Просмотров: 363; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |