Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Износ и стойкость фрез




В результате периодических динамических и тепловых нагрузок происходит износ зубьев фрез. Характер износа фрез несколько отличен от износа резцов в силу того, что толщина срезаемого слоя при фрезеровании небольшая. В связи с этим износ происходит в основном по задним поверхностям hз (рис. 5.5) и является лимитирующим.

Рис. 5.5. Износ зубьев фрез

 

Фрезы разного назначения имеют свои места наибольшего износа: угловые фрезы – по уголкам наибольшего диаметра, фасонные фрезы – в местах с наименьшими углами a, цилиндрические фрезы – в середине контакта, торцовые сборные фрезы – по вершинам ножей и т. д.

На рис. 5.5 стрелками показаны участки, где происходит наиболее интенсивный износ зубьев фрез. При черновом фрезеровании со сравнительно большими подачами на зуб (SZ > 0,1 мм/зуб) наблюдается также и износ по передней поверхности с образованием лунки износа.

Для всех типов фрез критерием износа служит величина фаски износа hз, находящаяся в пределах 0,3...1,2 мм, в зависимости от условий резания и свойств материалов.

По физической природе износ фрез чаще всего бывает адгезионным и усталостным. При отсутствии корки оксидов на поверхности заготовки попутное фрезерование сопровождается менее интенсивным износом, чем встречное, и поэтому стойкость фрез в 2...4 раза выше.

Кроме постепенного изнашивания зубья фрезы могут выходить из строя из-за их хрупкого и пластического разрушения. Хрупкое разрушение происходит под действием наибольших растягивающих напряжений и является следствием зарождения и развития трещин. При этом различают выкрашивания и сколы. Выкрашивание проявляется в отделении мелких частиц вблизи режущей кромки и обычно связано с поверхностными дефектами инструментального материала, неоднородностью микроструктуры и остаточными напряжениями. Оно мало зависит от угла заострения b и может происходить даже при малых подачах на зуб SZ. Режущая способность фрезы с выкрошенными зубьями восстанавливается после ее заточки. Скалывание – отделение крупных объемов зуба, превышающих объем клина в пределах контакта передней поверхности со стружкой, происходит при резании с чрезмерно большими значениями SZ и недостаточными углами b, а также малыми пределами выносливости и вязкости материала зубьев.

При возникновении сколов режущая способность фрез не восстанавливается. Наиболее часто хрупкое разрушение бывает у твердосплавных фрез и фрез с зубьями из СТМ. Пластическое разрушение наблюдается при работе быстрорежущими фрезами и характеризуется течением тонких слоев инструментального материала вдоль задней поверхности и опусканием вершины зуба. Оно возникает при чрезмерно высоких скоростях резания и очень высоких температурах.

Допустимая величина износа h3 зависит от свойств материалов заготовки и фрезы, требований к точности обработки и качеству поверхности слоя и находится в пределах h3 = 0,3...1,2 мм. При фрезеровании жаропрочных и титановых сплавов h3 = 0,5 мм.

Стойкость фрез Т изменяется в широких пределах и зависит от свойств обрабатываемого материала, скорости резания, типа и диаметра фрезы, вида обработки (черновая, чистовая). Например, период стойкости торцовых твердосплавных фрез T = 90...240 мин.

Для восстановления режущих свойств фрез применяют заточку их на универсально-заточных станках. Для фрез с многогранными и круглыми неперетачиваемыми пластинами восстановление режущих свойств производится заменой изношенных или сколотых пластин. На рис. 5.6 показаны схемы заточки фрез с затылованными (а) и остроконечными зубьями (б).

Рис. 5.6. Схемы заточки фрез с затылованными (а) и остроконечными зубьями (б)

 

На эксплутационные показатели фрез большое влияние оказывают условия окончательного формообразования поверхностей их режущих зубьев, которое выполняется затачиванием. Для восстановления режущих свойств применяют шлифовальные круги. Обработке подвергаются передние и задние поверхности зубьев, расположенные как на цилиндре, так и на торце фрезы. Для большинства фрез лимитирующим является изнашивание фрезы по задней поверхности. Это объясняется тем, что фрезы работают в зоне тонких стружек, имеющих толщину не более 0,3 мм (чаще не более 0,1 мм). Допустимый износ m устанавливается в пределах, приведенных в табл. 5.2.

 

Таблица 5.2 – Допустимый износ фрез

Фреза Материал режущей части фрезы Износ m при обработке стали, мм Износ m при обработке чугуна, мм  
Цилиндрическая Быстрорежущие стали Р6МЗ, Р12, Р6М5 0,4 – 0,6 0,5 – 0,8  
Торцовая 1,5 – 2,0 1,5 – 2,0  
Трехсторонняя 0,4 – 0,6 0,4 – 0,6  
Концевая 0,3 – 0,5 0,3 – 0,5  
Цилиндрическая Твердые сплавы Т5К10, Т15К6, ВК8 0,5 – 0,6 0,6 – 0,7  
 
Торцовая 1,0 – 1,2 1,5 – 2,0  
Трехсторонняя 1,0 – 1,2 1,0 – 1,2  
Концевая 0,4 – 0,5 0,3 – 0,5  

 

Число возможных повторных заточек фрез:

 

, (5.6)

 

Число периодов стойкости новой фрезы:

 

, (5.7),

 

где М – величина допустимого стачивания зуба,

q – величина стачивания зуба при одной заточке,

1 – период стойкости новой фрезы.

Величина допустимого стачивания зуба М зависит от конструкции фрезы и ее определяют для цельных, сборных и твердосплавных фрез по-разному. Для цельных фрез величина М зависит от высоты зуба Н:

 

. (5.8)

 

У цилиндрических сборных фрез ножи за счет их перестановки на шаг рифлений имеют возможность изменять вылет Н в радиальном направлении. У этих фрез величина допускаемого стачивания по цилиндру:

 

, (5.9),

 

где L – глубина паза под нож.

Торцовые сборные фрезы снабжаются, как правило, ножами, оснащенными твердосплавными пластинками. Величина допускаемого стачивания у этих инструментов (также как и у других твердосплавных фрез) зависит от размеров твердосплавных пластинок ножей. Для этих фрез величину допустимого стачивания принимают равной:

 

(по цилиндру) (5.10),

(по торцу) (5.11),

 

где b и I – соответственно ширина и длина твердосплавной пластинки на ноже.

Величина стачивания при заточке для рассматриваемых конструкций фрез:

 

(5.12)

 

где m – износ фрезы по задней поверхности (мм);

a – задний угол (главный или вспомогательный);

0,1...0,2 – дополнительно снимаемый слой (мм).

При выполнении лабораторной работы за расчетное значение m следует принимать величину критерия затупления по табл. 5.2.

 




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 2215; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.