Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Связующие материалы 4 страница




В 1995 году появилось сообщение о получении углеродных нанотрубок методом распыления графитовой мишени под воздействием импульсного лазерного излучения в атмосфере инертного (He или Ar) газа. Графитовая мишень находится в кварцевой трубке при температуре 1200°С, по которой течет буферный газ. Фокусирующийся системой линз лазерный пучок сканирует поверхность графитовой мишени для обеспечения равномерного испарения материала мишени. Получающийся в результате лазерного испарения пар попадает в поток инертного газа и выносится из высокотемпературной области в низкотемпературную, где и осаждается на охлаждаемой водой медной подложке. Сажа, содержащая нанотрубки, собирается с медной подложки, стенок кварцевой трубки и обратной стороны мишени.

Широко используемый способ получения углеродных нанотрубок основан на использовании процесса разложения ацетилена в присутствии катализаторов. В качестве катализаторов использовались частицы металлов Ni, Co, Cu и Fe размером несколько нанометров. В кварцевую трубку длиной 60 см, внутренним диаметром 4 мм, помещается керамическая лодочка с 20-50 мг катализатора. Смесь ацетилена C2H2 (2,5-10%) и азота прокачивается через трубку в течение нескольких часов при температуре 500-1100°С. После чего система охлаждается до комнатной температуры.

Основная идея электролитического синтеза состоит в том, чтобы получить углеродные нанотрубки, пропуская электрический ток между графитовыми электродами, находящимися в расплавленной ионной соли. Графитовый катод расходуется в процессе реакции и служит источником атомов углерода. В результате формируется широкий спектр наноматериалов. Анод представляет собой лодочку, сделанную из высоко чистого графита и заполненную хлоридом лития. Лодочка нагревается до температуры плавления хлорида лития (604°С) на воздухе или в атмосфере инертного газа (аргона). В расплавленный хлорид лития погружается катод и в течение одной минуты между электродами пропускается ток 1-30 А. За время пропускания тока погруженная в расплав часть катода эродирует. Далее расплав электролита, содержащий частицы углерода, охлаждается до комнатной температуры. Для того чтобы выделить частицы углерода, получившиеся вследствие эрозии катода, соль растворялась в воде. Осадок выделялся, растворялся в толуоле и диспергировался в ультразвуковой ванне. Продукты электролитического синтеза исследовались с помощью ПЭМ. Выявлено, что они состоят из закапсулированных частиц металла, «луковиц» и углеродных НТ различной морфологии, включая спиральные и сильно изогнутые. В зависимости от условий эксперимента диаметр нанотрубок образованных цилиндрическими графеновыми слоями колебался от 2 до 20 нм. Длина многослойных углеродных нанотрубок достигала 5 мкм. Найдены оптимальные условия по току – 3-5 А. При высоком значении тока (10-30 А) образуются только закапсулированные частицы и аморфный углерод. При низких значениях тока (<1 А) образуется только аморфный углерод.

В методе квазисвободной конденсации пара, углеродный пар образуется в результате резистивного нагрева графитовой ленты и конденсируется на подложку из высокоупорядоченного пиролитического графита, охлаждаемую до температуры 300С в вакууме 10-8 Торр. ПЭМ-исследования полученных пленок толщиной 2-6 нм показывают, что они содержат углеродные нанотрубки диаметром 1-7 нм, длиной до 200 нм, большинство из которых заканчивается сферическими окончаниями. Содержание нанотрубок в осадке превышает 50%. Для многослойных нанотрубок расстояние между образующими их графеновыми слоями составляет 0.34 нм. Трубки располагаются на подложке практически горизонтально.

Большой и важный раздел нанохимии углеродистых трубок составляет получение различных функциональных групп на их боковых поверхностях. Подобный процесс можно осуществитьпри длительной обработке трубок кислотами, при этом поведение однослойных нанотрубок зависит от способа их получения[7]. При окислении в растворах поверхность нанотрубок покрывается карбоксильными (–СООН), карбонильными (–СО) и гидроксильными (–ОН) группами, соотношение между которыми составляет примерно 4:2:1. Эти группы можно заменять на другие, «прививать» желаемые и придавать тем самым сравнительно инертным молекулам химическую индивидуальность.

Несмотря на то, что человечество использует углерод на протяжения многих тысячелетий, многие его свойства и модификации были открыты относительно недавно. Разработка способов получения углеродных материалов и изучение их свойств продолжается, как и поиски путей их применения в электронике, биологии, медицине и других областях деятельности человека. Свойства уже созданных углеродных материалов вселяют надежду на их широкое применение и появление новых и новых материалов.

 

УГЛЕГРАФИТОВЫЕ МАТЕРИАЛЫ, техн. материалы на основе природные или синтетич. графита. Характеризуются высокой жаростойкостью (до 3700 оС при давлении до 20 ГПа), высокой прочностью при повыш. температурах, окислит, стойкостью на воздухе, в паро-воздушной и агрессивных неокислит. средах; некоторые УГЛЕГРАФИТОВЫЕ МАТЕРИАЛЫ м. обладают также высоким (до 800 ГПа) модулем упругости.

К УГЛЕГРАФИТОВЫЕ МАТЕРИАЛЫ м. обычно относятся кокс каменноугольный, кокс нефтяной, различные виды графита, стеклоуглерод, углерод-углеродные материалы, углеродные волокна, технический углерод (сажа).




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 514; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.