Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Описание зонной математической модели пожара в помещении




Зонные математические модели в чаще всего используются для исследования динамики опасных факторов пожара в начальной стадии пожара. В начальной стадии распределение параметров состояния газовой среды по объему помещения характеризуется большой неоднородностью (неравномерностью). В этот период (отрезок) времени пространство внутри помещения можно условно поделить на ряд характерных зон с существенно различающимися температурами и составами газовых сред. Границы этих зон по мере развития пожара не остаются неизменными и неподвижными. В течение времени геометрическая конфигурация зон меняется и сглаживается контрастное различие параметров состояния газа в этих зонах. В принципе, пространство внутри помещения можно разбить на любое число зон. В этой главе рассмотрим простейшую зонную модель пожара, которая применима при условиях, когда размеры очага горения значительно меньше размеров помещения.

Процесс развития пожара можно представить следующим образом. После воспламенения горючих веществ образующиеся газообразные продукты устремляются вверх, образуя над очагом горения конвективную струю. Достигнув потолка помещения, эта струя растекается, образуя припотолочный слой задымленного газа. В течение времени толщина этого слоя увеличивается.

В соответствии с вышесказанным в объеме помещения можно выделить три характерные зоны: конвективную колонку над очагом пожара, припотолочный слой нагретого газа и воздушную зону с практически неизменными параметрами состояния, равными своим начальным значениям. Математическая модель пожара, базирующаяся на разбиении пространства на характерные области, получила название трехзонной модели. Схема этой модели показана на рис. 1.2.

 

 

Рис. 1.2. Схема зонной модели пожара в помещении

 

Достигнув потолка помещения, продукты горения растекаются под ним в виде радиальной струи, температура и скорость в которой по мере удаления от оси уменьшаются за счет тепло массообмена с окружающей средой и строительными конструкциями. После достижения радиальной струей стен помещения начинается образование нагретого припотолочного слоя дыма, толщина которого увеличивается вследствие поступления в слой смеси продуктов горения и воздуха ив конвективной колонки.

Таким образом, процесс задымления помещения при пожаре можно разбить на два этапа. На первом этапе происходит растекание нагретого дыма под потолком помещения в виде радиальной струи, на втором этапе рост толщины нагретого слоя дыма, включающего радиальную струю и верхнюю часть конвективной колонки. Соответственно в объеме помещения можно выделить следующие характерные зоны: факел пламени с конвективной колонкой над ним, припотолочный слой нагретого дыма и воздушную зону с практически неизменной температурой. Эти зоны особенно отчетливо наблюдаются при локальных пожарах, когда размеры очага горения значительно меньше размеров помещения.

Зонные математические модели учитывают существование в помещении перечисленных зон. Эти модели точнее отражают реальную физическую картину локального пожара по сравнению с интегральными моделями и, следовательно, дают более полные и достоверные результаты расчета. Это достигается, прежде всего, тем, что в зонных моделях усреднение термодинамических параметров среды производится не по объему всего помещения, а по объему более однородных зон. Если же размеры очага горения сравнимы с размерами помещения, потоки газов могут практически полностью перемешивать среду в помещении (объемный пожар). В таком случае физическая картина процесса ближе к интегральной модели, и соответственно интегральная модель дает более корректные результаты. Поэтому интегральные модели обычно используются для решения задач, связанных с развитой стадией пожара (например, обеспечения огнестойкости строительных конструкций), а зонные модели нашли свое основное применение при решении задачи обеспечения безопасности людей и других задач, связанных с начальной стадией пожара.

При разработке зонных математических моделей развития пожара в помещении параметры очага горения и конвективной колонки, как правило, задаются в виде полуэмпирических зависимостей, полученных в результате предварительного теоретического анализа и обработки экспериментальных данных. С помощью зонных моделей рассчитываются усредненные параметры припотолочного слоя дыма и высота свободной границы (границы раздела между этим слоем и слоем чистого воздуха) в зависимости от времени. Расчет производится путем интегрирования балансовых уравнений припотолочного слоя дыма с учетом начальных условий.

Ниже сформулированы основные уравнения зонной математической модели пожара в помещении.

Уравнение баланса массы. При отсутствии проемов в верхней части помещения и без учета механической вентиляции уравнение баланса массы припотолочного слоя дыма записывается в виде

 

,

M - масса слоя дыма, кг;

τ - время с момента возникновения пожара, с;

G - массовый расход газов, поступающих в слой из конвективной колонки или непосредственно из очага горения, кг/с.

Если свободная граница находится ниже основания очага, будет справедливым очевидное равенство G = Ψ (где Ψ - массовая скорость газификации горючей нагрузки, кг/с). При τ = 0 уравнению баланса массы отвечает начальное условие M (0) = 0.

Уравнение баланса энергии. Численные оценки показывают, что лучистый теплообмен слоя дыма с факелом пламени и ограждающими конструкциями в нижней зоне помещения мал по сравнению с тепловыми потоками, поступающими из конвективной колонки и отводимыми в ограждающие конструкции в верхней зоне помещения. Поэтому исходное уравнение сохранения энергии припотолочного слоя дыма при отсутствии вентиляции можно записать в следующем виде:

 

,

 

U - внутренняя энергия слоя дыма, Дж;

Q - тепловой поток, подводимый из конвективной колонки или непосредственно из очага горения, кг/с;

Q - тепловой поток, отводимый в ограждающие конструкции, Вт;

P - статическое давление газов в задымленном слое, Па;

V - объем задымленного слоя, м3.

Если свободная граница находится ниже основания очага, то

 

Q = ( Q - I )ψ,

- массовая полнота сгорания;

Q - низшая теплота сгорания ГН, Дж/кг;

I - энтальпия продуктов газификации ГН, Дж/кг.

Если же свободная граница находится выше основания очага, то

Q = C T G ,

где C и T изобарная теплоемкость и температура газов в конвективной колонке на высоте свободной границы, Дж/(кг·К) и К соответственно.

Используя соотношения термодинамики, уравнение возможно преобразовать к конечному виду

 

(С Р /R ) (dV / d )= Q - Q ,

где C и T - изобарная теплоемкость и приведенная газовая постоянная задымленного слоя, Дж/(кг·К). При τ = 0 этому уравнению отвечает начальное условие V (0) = 0. Как показывают численные оценки, значения С Р и R в данном уравнении допустимо принять постоянными и равными значениям этих параметров для нормальной атмосферы.

Дополнительные соотношения. Уравнения позволяют рассчитать изменение во времени массы M и объема V задымленного слоя, если определить соотношения для входящих в эти уравнения неизвестных переменных G , T , Ψ и (так как значения , Q , и C могут считаться постоянными, а величиной I можно пренебречь). Кроме того, необходимо задать соотношения для расчета основных параметров - высоты свободной границы Y и температуры слоя дыма T .

Из теории стационарной свободной конвективной струи имеем

 

G + 0,21(Y - Y ) ((1 – χ) g Q / (C T )) ,

 

T = ((1 – χ) g Q / (C G )) + T ,

 

Y - высота расположения очага горения, м;

Ψ - коэффициент, учитывающий лучистый теплообмен очага и конвективной колонки с ограждающими конструкциями;

g - ускорение свободного падения, м/с2;

и T - начальные значения плотности и температуры воздуха в помещении, кг/м3 и К соответственно.

Приведенные соотношения справедливы при Y > Y ; если же Y < Y , следует использовать формулы, данные в предыдущих разделах.

Величина Y находится из очевидного соотношения

 

Y = H - V / F ,

H и F - высота и площадь помещения, м и м2, а температура дыма T из уравнения состояния идеального газа

 

T = (P V ) / (M R )

 

причем при τ = 0 следует полагать T = T .

Аналитическое решение системы дифференциальных уравнений, описывающих развитие пожара, может быть получено лишь для некоторых частных случаев. В общем случае система решается численными методами. Перед тем как приступить к численному решению системы уравнений, описывающих пожар при указанных выше условиях, целесообразно привести уравнения пожара к безразмерному виду.

Для интегрирования системы уравнений пожара с заданными начальными условиями можно использовать стандартную программу (метод Рунге — Кутта) с автоматическим выбором шага интегрирования. Шаг интегрирования выбирается в соответствии с погрешностью интегрирования. Как правило, следует задавать очень невысокую погрешность.

Перед тем как приступить к численному решению системы уравнений, описывающих пожар при указанных выше условиях, целесообразно привести уравнения пожара к безразмерному виду.

 

2. Расчет динамики опасных факторов пожара в помещении




Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 8881; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.037 сек.