КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Аспирационные методы определения запыленности воздуха
3.1. Аспирационно-весовой метод заключается в протягивании определенного объема воздуха с помощью электроаспиратора Мигунова или пылесоса с реометром (прибор, который показывает скорость аспирации) через аэрозольный фильтр АФА-В-18 из нетканого синтетического фильтровального полотна Петрянова (ФПП), закрепленного в специальном воронкообразном аллонже (рис. 12.2). Фильтр (без бумажного фиксирующего кольца) взвешивают на аналитических или торсионных весах до и после аспирации воздуха.
Рис. 12.2. Кассеты и аллонжи для отбора проб воздуха на фильтры. 1 – фильтр из ткани ФПП; 2 – пластмассовый аллонж с фильтром; 3 – металлический аллонж; 4 – корпус кассеты; 5 – гайка кассеты; 6 – кольцо прокладки.
Продолжительность отбора проб воздуха зависит от степени запыленности воздушной среды, скорости аспирации воздуха при отборе проб и необходимой минимальной навески на фильтре. Время отбора пробы определяют за формулой:
Т= а ´ 1000 / С ´ W,
где: Т – время аспирации воздуха, мин.; а – минимальная необходимая навеска пыли на фильтре, мг; C – ПДК исследуемой пыли, мг/м3; W – скорость аспирации воздуха, л/мин. При небольшой собственной массе фильтра (до 100 мг) максимальная довеска должна быть не больше 25–50 мг. Расчет концентрации пыли (мг/м3) проводят за формулой: С = (q 2 – q 1) ´ 1000 / V0, где: С – концентрация пыли мг/м3; q 1 – масса фильтра до аспирации воздуха; q 2 – масса фильтра после аспирации воздуха; V0 – объем воздуха, приведенный к нормальным условиям за формулой Гей-Люссака.
3.2. Аспирационно-счетный метод используется в двух вариантах. В первом варианте фильтры АФА, которые были использованы для определения массового содержания пыли в воздухе, накладывают фильтрующей поверхностью на предметное стекло и держат несколько минут над парами ацетона до расплавления тканей фильтра. В результате расплавления фильтра образуется прозрачная пленка, в которой под микроскопом хорошо видны фиксированные пылевые частички. Препараты, полученные как седиментационным, так и аспирационным способом, исследуют под микроскопом с помощью окулярного микрометра, который представляет собой линейку, нанесенную на круглое стекло с диаметром, который равняется внутреннему диаметру окуляра микроскопа. Для определения размеров пылевых частичек следует установить цену деления микрометрической линейки. Для этого в окуляр микроскопа помещают окулярный микрометр с делениями от 0 до 50. Объективный микрометр с ценой деления 10 мкм фиксируют на предметном столике микроскопа. Затем совмещают деления окулярного микрометра с каким-либо делением объективного микрометра. По количеству делений окулярного микрометра, которые попали в определенное количество делений объективного микрометра, определяют цену деления окулярной шкалы (рис. 12.3). Например, 12 делений шкалы окулярного микрометра совпадают с одним делением шкалы объективного микрометра, которая равняется 10 мкм. Отсюда, одно деление окулярного микрометра равняется = 0,83 мкм. Сохраняя ту же самую оптическую систему, определяют размеры пылевых частиц, поместив предметное стекло с пылью вместо объектива-микрометра. Например, наибольший размер пылевой частички отвечает трем делениям шкалы окулярного микрометра, отсюда размер этой пылинки составляет 0,83 ´ 3 = 2,49 мкм. В разных участках поля зрения микроскопа определяют размеры не менее 100 – 300 пылевых частиц, группируют их количество по размерам (заносят в табл. 2) и рассчитывают пылевую формулу – процентное соотношение пылевых частиц по размерам к их общему количеству. Пылевая формула позволяет оценить степень опасности пыли для легочной системы: чем больший процент мелкодисперсной пыли, тем она опасней с точки зрения развития пневмокониозов или общетоксического воздействия.
Таблица 2.
Дата добавления: 2014-11-18; Просмотров: 2058; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |