Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Специализированных прикладных технологий, использующих компьютер (как правило, в режиме реального времени) в сочетании с измерительной аппаратурой, датчиками и т.п




Вербальные модели, словесные, текстовые модели - эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности (примерами такого рода моделей являются ГОСТы, протоколы, договоры, правила дорожного движения). Отличительной особенностью таких моделей является их удобная для понимания и действия людей форма, но часто отсутствие необходимого уровня формализма для автоматизированной и автоматической обработки данных.

Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, организовать питание больших групп людей (в армии, летнем лагере и др.) как можно полезнее и как можно дешевле. Ясно, что эти цели, вообще говоря, совсем не совпадают, т.е. при моделировании будет несколько критериев, между которыми надо искать баланс. В этом случае говорят о многокритериальных моделях.

В оптимизационных моделях мы можем воздействовать на процессы, пытаясь добиться какой-то цели. В этом случае в модель входит один или несколько параметров, доступных нашему влиянию. Например, меняя тепловой режим в зернохранилище, мы можем стремиться подобрать такой, чтобы достичь максимальной сохранности зерна, т. е. оптимизируем процесс.

Моделируя движение кометы, вторгшейся в Солнечную систему, мы описываем ситуацию (предсказываем траекторию полета кометы, расстояние, на котором она пройдет от Земли и т.д.), т.е. ставим чисто описательные цели. У нас нет никаких возможностей повлиять на движение кометы, что-то изменить в процессе моделирования.

Имитационные модели.

Остановимся на этой классификации подробнее и поясним ее на примерах.

Игровые модели могут иметь отношение не только к детским играм (в том числе и компьютерным), но и к вещам весьма серьезным. Например, полководец перед сражением в условиях наличия неполной информации о противостоящей армии должен разработать план, в каком порядке вводить в бой те или иные части и т.п., учитывая возможную реакцию противника. В современной математике есть специальный раздел – теория игр, изучающий методы принятия решений в условиях неполной информации.

Наконец, бывает, что модель в большой мере подражает реальному процессу, т.е. имитирует его. Например, моделируя динамику численности микроорганизмов в колонии, можно рассматривать совокупность отдельных объектов и следить за судьбой каждого из них, ставя определенные условия для его выживания, размножения и т.д. При этом часто явное численно-математическое описание процесса не используется, а используются некоторые логические условия, характеризующие поведение элементов моделируемой системы (например, по истечении некоторого отрезка времени микроорганизм делится на две части, а другого отрезка – погибает). Другой пример – моделирование движения молекул в газе, когда каждая молекула представляется в виде шарика, и задаются условия поведения этих шариков при столкновении друг с другом и со стенками (например, абсолютно упругий удар); при этом не нужно использовать никаких уравнений движения.

Можно сказать, что чаще всего имитационное моделирование применяется в попытке описать свойства большой системы при условии, что поведение составляющих ее объектов очень просто и логически четко сформулировано. Численно-математическое описание тогда производится на уровне статистической обработки результатов моделирования при нахождении макроскопических характеристик системы. Такой компьютерный эксперимент фактически претендует на воспроизведение натурного эксперимента. На вопрос же «зачем это делать?» можно дать следующий ответ: имитационное моделирование позволяет выделить «в чистом виде» следствия гипотез, заложенных в наши представления о микрособытиях, очистив их от неизбежного в натурном эксперименте влияния других факторов, о которых мы можем даже не подозревать. Если же такое моделирование включает и элементы математического описания событий на микроуровне, и если исследователь при этом не ставит задачу поиска стратегии регулирования результатов (например, управления численностью колонии микроорганизмов), то отличие имитационной модели от дескриптивной достаточно условно; это, скорее, вопрос терминологии.

Еще один подход к классификации абстрактныхх моделей подразделяет их на детерминированные и стохастические (вероятностные). В детерминированных моделях входные параметры поддаются измерению однозначно и с любой степенью точности, т.е. являются детерминированными величинами. Соответственно, процесс эволюции такой системы детерминирован. В стохастических моделях значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются стохастическими; соответственно, случайным будет и процесс эволюции системы. При этом, выходные параметры стохастической модели могут быть как величинами вероятностными, так и однозначно определяемыми.

Наконец, если ограничиться непрерывными детерминистскими моделями, то их часто подразделяют на системы с сосредоточенными параметрами и системы с распределенными параметрами. Системы с сосредоточенными параметрами описываются с помощью конечного числа обыкновенных дифференциальных уравнений для зависящих от времени переменных. Пространство состояний имеет здесь конечную размерность (число степеней свободы системы конечно). В противоположность этому под системами с распределенными параметрами понимают системы, описываемые конечным числом дифференциальных уравнений в частных производных. Здесь переменные состояния в каждый момент времени есть функции одной или нескольких пространственных переменных. Пространство состояний имеет в этом случае бесконечную размерность, т.е. система обладает бесконечным числом степеней свободы.

Математические модели, численные модели - очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), использующих те или иные математические методы. Например, математическая модель маятника будет представлять собой систему уравнений, описывающих движение массы, происходящее в под воздействием внешней силы и механических связей, ограничивающих движение массы. Другой математической моделью являются, например, математические соотношения, позволяющие рассчитать оптимальный (наилучший с экономической точки зрения) план работы какого-либо предприятия. Отличительной особенностью численно-математических моделей является их способность дать точную информацию о количественных характеристиках процесса, происходящего в модели и практически полная неспособность решать качественно-логические задачи.

Информационно-коммуникационные модели - класс знаковых моделей, описывающих информационные процессы (получение, передачу, обработку, хранение и использование информации) в системах самой разнообразной природы. Примерами таких моделей могут служить OSI - семиуровневая модель взаимодействия открытых систем в компьютерных сетях, или машина Тьюринга - универсальная алгоритмическая модель.

Подчеркнем, что граница между вербальными, математическими и информационными моделями может быть проведена весьма условно. Так, информационные модели иногда считают подклассом математических моделей. Однако, в рамках информатики как самостоятельной науки, отделенной от математики, физики, лингвистики и других наук, выделение информационных моделей в отдельный класс является целесообразным.

Отметим, что существуют и иные подходы к классификации абстрактных моделей; общепринятая точка зрения здесь еще не установилась.

В прикладных науках различают следующие виды абстрактных моделей:

чисто аналитические математические модели, не использующие компьютерных средств;

информационные модели, имеющие приложения в информационных системах;

вербальные языковые модели;

компьютерные модели, которые могут использоваться для:

численного математического моделирования;

визуализации явлений и процессов (как для аналитических, так и для численных моделей);




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 519; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.