Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Построение линии пересечения поверхностей

Стерлитамакский филиал

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ

НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

 

 

Методические указания к решению домашнего задания № 3

для студентов специальности 240801, 240401, 280201

 

 

Уфа 2009


Методические указания предназначены для студентов всех специальностей при изучении темы "Взаимное пересечение поверхностей" и выполнении домашнего графического задания по этой теме.

Перед работой с методическими указаниями студент обязан изучить материал по рекомендуемой литературе.

 

 

1 ЦЕЛЬ И СОДЕРЖАНИЕ ЗАДАНИЯ

 

1.1 Целью задания является изучение способов построения линии пересечения поверхностей.

1.2 Содержание задания:

а) построить проекции линий пересечения заданных поверхностей способом плоскостей-посредников (формат A3);

б) построить проекции линий пересечения поверхностей способом сферических посредников (формат A3);

в) отметить характерные точки линий пересечения.

Варианты индивидуальных заданий приведены в приложении.

 

 

2 МЕТОДИКА И ПОРЯДОК ВЫПОЛНЕНИЯ ЗАДАНИЯ

 

2.1. Произвести разметку (компоновку) формата, предусматривая рациональное использование поля чертежа.

2.2. Вычертить в тонких линиях карандашом исходные данные задачи, вспомогательные линии построения, найденную линию пересечения поверхностей.

2.3. Заполнить основную надпись (содержание и размеры приведены на рис.1)

 

 

 

Рис. I. Основная надпись

 


2.4. Работа, выполненная в тонких линиях, должка быть представлена на проверку преподавателю.

2.5. После проверки произвести обводку чертежа, исходя из следующих требований:

2.5.1 Данные элементы выполняются черным цветом карандашом, тушью или пастой сплошной основной линией (S @ 1 мм).

2.5.2 Линии проекционной связи и оси проекций выполняются черным цветом сплошной тонкой линией карандашом, тушью или пастой (S @ 0,5 мм).

2.5.3 Линии вспомогательных построений, выполняются зеленым или синим цветом сплошной тонкой линией (S @ 0,5 мм) также карандашом, тушью или пастой.

2.5.4 Искомые элементы выполняются сплошной основной линией красного цвета (карандаш, тушь, паста, фломастер, S @ 1 мм), S - толщина линии.

2.6. Представить работу для защиты. Защита работы фиксируется подписью преподавателя в графе «Принял» и сопровождается соответствующей оценкой, проставляемой в виде дроби: числитель - оценка за глубину изучения темы, знаменатель - оценка за качество графического исполнения чертежа.

 

 

3 ОБЩИЕ СВЕДЕНИЯ

 

Линия пересечения поверхностей - это кривая, состоящая из точек, принадлежащих обеим поверхностям. Она представляет собой в общем случае пространственную кривую, которая может распадаться на две и более части. Эти части могут быть, в частности, и плоскими кривыми. Обычно линию пересечения строят по ее отдельным точкам.

Общим способом построения этих точек является способ поверхностей - посредников. Пересекая данные поверхности некоторой вспомогательной поверхностью и определяя линии пересечения ее с данными поверхностями, в пересечении этих линий получим точки, принадлежащие искомой линии пересечения.

Наиболее часто в качестве поверхностей-посредников применяют плоскости или сферы, в зависимости от чего различают следующие способы построения точек линии пересечения двух поверхностей:

а) способ вспомогательных плоскостей;

б) способ вспомогательных сфер.

Применение того или иного способа построения линии пересечения поверхностей зависит как от типа данных поверхностей, так и от их взаимного расположения.


 

4 СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ

ЧАСТНОГО ПОЛОЖЕНИЯ

 

При нахождении точек линии пересечения поверхностей необходимо соблюдать определенную последовательность. У линии пересечения различают точки опорные (характерные) и промежуточные (случайные). В первую очередь определяют опорные точки, т.к. они позволяют видеть, в каких пределах расположены проекции линии пересечения и где необходимо изменять положение вспомогательных поверхностей-посредников.

К опорным точкам относят точки, лежащие на очерках поверхностей, высшие и низшие точки, ближайшие к наблюдателю и наиболее удаленные от него, крайние левые и правые.

Способ вспомогательных плоскостей следует применять тогда, когда обе пересекающиеся поверхности, возможно пересечь по графически простым линиям (окружностям или прямым) некоторой совокупностью проецирующих плоскостей (или, в частном случае, совокупностью плоскостей уровня).

На рис. 2 показано построение линии пересечения горизонтально проецирующего цилиндра с конусом вращения. Опорные точки 1 и 2 определены при пересечении главных меридианов обеих поверхностей, находящихся в плоскости симметрии. Случайные точки 3,31 4, 41 находят с помощью горизонтальных плоскостей уровня S1 и S2, пересекающих обе поверхности по окружности. Фронтальная проекция линии пересечения строится по законам проекционной связи.

На рис. 3 построена линия пересечения конуса вращения со сферой. Опорные точки линии пересечения 1 и 2 определяются сразу, как и в предыдущем случае, при пересечении очерковых образующих (главных меридианов). Случайные точки 5, 51 находят с помощью горизонтальной плоскости уровня S3. Точки видимости 4и 41 определяет плоскость S1, пересекающая сферу по экватору. Точки 4 и 41 разделяют горизонтальную проекцию линии пересечения на видимую и невидимую части. Для построения двух крайних левых точек 3 и 31 необходимо из точки 0 (0 ', 0) пересечения осей конуса и шара опустить перпендикуляр на образующую конуса и через точку К ' провести плоскость S2. В пересечении соответствующих окружностей получаются точки 3 и 31 - крайние левые. Проведя ряд вспомогательных плоскостей, можно получить какое угодно количество случайных точек, уточняющих форму линии пересечения.

 

 

Рис. 2. Построение линии пересечения цилиндра и конуса

 

 

Рис. 3. Построение линии пересечения конуса и сферы

 

5 СПОСОБ СФЕРИЧЕСКИХ ПОСРЕДНИКОВ

 

Сферические посредники нашли широкое применение в решении задач на взаимное пересечение поверхностей. Обуславливается это тем, что:

а) проекции сферы строятся чрезвычайно просто;

б) на сфере может быть взято бесчисленное множество семейств окружностей;

в) любая плоскость, проходящая через центр сферы, является плоскостью ее симметрии,

В основе метода сферических посредников лежит следующая теорема: "Две соосные поверхности вращения пересекаются по окружностям, число которых равно числу точек пересечения их главных меридианов". Пусть заданы две соосные поверхности вращения Ф и ψ рис, 4), их главные меридианы а' и b' Общие точки этих меридианов 2. и 1 образуют при вращении окружности, которые являются общими для данных поверхностей. Эти окружности проецируются на фронтальную плоскость проекций в виде прямых, перпендикулярных к оси вращения, а на горизонтальную плоскость - в натуральную величину. Любое другое поясное сечение, например, плоскостью S, даст две окружности разных диаметров.

В способе сферических посредников в качестве одной из соосных поверхностей берутся сферы, а в качестве второй - любая поверхность вращения, например, конус, цилиндр, шар, эллипсоид и гиперболоид вращения и др.

Рис. 4. Соосные поверхности

В этом случае указанная теорема получает следующую формулировку: "Если центр секущей сферы находится на оси поверхности вращения, то сфера пересекает данную поверхность по окружности" (рис.5).

 

 

Рис. 5. Сфера, соосная поверхностям вращения

Во всех случаях сфера пересекается с поверхностью вращения по окружностям равных или разных диаметров, которые проецируются в прямые линии, перпендикулярные к оси поверхности вращения. Способ сферических посредников имеет две разновидности:

а) способ концентрических сфер, когда сферы-посредники строятся из одного и того же центра;

б) способ эксцентрических сфер, когда посредники строятся из различных центров.

Для решения задач первым способом необходимы следующие условия:

l) обе заданные поверхности должны быть поверхностями вращения;

2) оси обеих поверхностей должны пересекаться между собой и лежать в общей плоскости симметрии.

Для решения задач вторым способом (эксцентрических сфер) условия несколько иные, а именно:

1) одна из пересекающихся поверхностей должна быть поверхностью вращения, а вторая - нести на себе семейство круговых сечений;

2) обе поверхности должны иметь общую плоскость симметрии, на которую круговые сечения проецируются в виде прямых линий.

На рис.6 показано определение линии пересечения двух поверхностей вращения (конуса и цилиндра) способом концентрических сфер. План решения задачи следующий:

1) принимают точку пересечения осей поверхностей О (О ', О) за центр, проводят вспомогательные сферы-посредники;

2) определяют окружности пересечения сфер-посредников с каждой из заданных поверхностей в отдельности;

 

3) находят точки пересечения полученных окружностей, эти точки принадлежат искомой линии пересечения' поверхностей.

 

Начинают построение с определения опорных точек - точек пересечения очерковых образующих 1 и 2. Далее определяют значение радиуса наибольшей и наименьшей сферы-посредника; R макс равен расстоянию от центра О до наиболее удаленней точки пересечения очерковых образующих, Для определения радиуса наименьшей сферы-посредника R мин. из центра О ' опускают нормали О 'К' и

О ' Т ' на очерковые образующие обеих поверхностей. Величина большей из нормалей и является радиусом наименьшей сферы-посредника. Эта наименьшая вспомогательная сфера даёт еще одну опорную точку - точку 5, которая является точкой крайнего прогиба, вершиной кривой линии пересечения. Остальные точки строятся с помощью промежуточных сфер, радиус которых берется в пределах Rмин<Rсф< R макс.. Точки 3 и 4 являются точками видимости для горизонтальной проекции линии пересечения, которая строится по законам принадлежности линии пересечения поверхности конуса (или цилиндра).

 




Рис. 6. Построение линии пересечения с помощью концентрических сфер

 



Рис. 7. Построение линии пересечения с помощью эксцентрических сфер

 

На рис.7 построена линия пересечения конуса, ось которого перпендикулярна горизонтальной плоскости, и четверти тора, ось вращения которого перпендикулярна фронтальной плоскости проекций. Для решения использовался способ эксцентрических сфер-посредников. Решение задачи начинают с определения точек пересечения очерковых образующих обеих поверхностей. Точки 1,2,3.определяются непосредственно с чертежа фронтальной проекции, а точка 4 пересечения оснований поверхностей найдена на горизонтальной проекции. Для построения промежуточных точек линии пересечения рассекают торовую поверхность плоскостями, проходящими через ось тора. В сечении получают окружности. Например, плоскость S1 пересекает тор по окружности диаметра а' b '. Изцентра этой окружности точки К ' восстанавливают перпендикуляр до пересечения с осью конуса в точке О ' 1. Принимая эту точку за центр, строят вспомогательную сферу-посредник радиусом О ' 1 а'' 1 b'). Эта сфера пересекает тор по известной уже окружности а' b ', а конус - по окружности 8 ' -9 '. Взаимное их пересечение дает точку 5 линии пересечения. Аналогично с помощью плоскостей S2 и S3 найдены точки 6 и 7.

 

ЛИТЕРАТУРА

 

1. Нартова Л.Г. Начертательная геометрия: Учеб. - М.: Академия, 2011.

2. Гордон В.О. Начертательная геометрия. – М.: Высш. шк., 2002.

3. Гордон В.О. Сборник задач по курсу начертательной геометрии. – М.: Высш. шк., 2003.

4. Стрижаков А.В. и др. Начертательная геометрия: Учеб. пос. для вузов. - Ростов н/Д: Феникс, 2004.


ПРИЛОЖЕНИЕ

 


 


 


 


 


 

 

 

 

 

 

СОДЕРЖАНИЕ

 

1. Цель и содержание задания.................. 1

2. Методика и порядок выполнения задания............ 1

3. Общие сведения....................... 2

4. Способ вспомогательных плоскостей частного положения..... 3

5. Способ сферических посредников................ 5

Литература........................ 10

Приложение........................ 11

 

<== предыдущая лекция | следующая лекция ==>
Адресация ячеек | Гбоу впо ЧГМА, 2013
Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 10556; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.042 сек.